首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Adsorption and transport of arsenic(V) in experimental subsurface systems
Authors:Williams L Elizabeth  Barnett Mark O  Kramer Timothy A  Melville Joel G
Institution:Dep. of Civil Engineering, 208 Harbert Engineering Center, Auburn Univ., Auburn, AL 36849, USA.
Abstract:The adsorption and transport of As(V) in a heterogeneous, iron oxide-containing soil was investigated in batch and column laboratory experiments. The As(V) adsorbed rapidly to the soil over the first 48 h, but continued to adsorb slowly over the next several weeks, clearly indicating the potential for rate-limited transport. The equilibrium As(V) adsorption isotherm was markedly nonlinear, further indicating the potential for nonideal transport. A model developed for the adsorption of As(V) to hydrous ferric oxide (HFO) was able to predict the pH-dependent adsorption of As(V) to the soil in batch experiments within 0.116 to 0.726 root mean square error (RMSE). Arsenic(V) was significantly retarded in column transport experiments. The column transport experiments were modeled using the one-dimensional advection-dispersion equation, considering both linear and nonlinear adsorption equilibrium. Although the nonlinear local equilibrium model (NLLE, RMSE = 0.273) predicted the data better than the linear local equilibrium model (LLE, RMSE = 0.317), As(V) breakthrough occurred more rapidly than predicted by either model due to adsorption nonequilibrium. However, due to the presence of an irreversible or slowly desorbing fraction, the peak aqueous As(V) concentration (0.624 mg L(-1)) and the total amount of As(V) recovered (44%) was lower than predicted based on the two equilibrium models (NLLE and LLE). For the conditions used in this study 1 mg L(-1) As(V), pH 4.5 and 9,0-0.25 mM PO4, 0.53-1.6 cm min(-1) pore water velocity], the effect on As(V) mobility and recovery increased in the order pH < pore water velocity < PO4.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号