首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Compost and calcium surface treatment effects on subsoil chemistry in acidic minespoil columns
Authors:von Willert Frank J  Stehouwer Richard C
Institution:Department of Crop and Soil Sciences, Penn State Univ., 116 ASI Building, University Park, PA 16802, USA.
Abstract:Surface incorporation of a liming agent in combination with compost or biosolids is a proven way to revegetate acidic minespoils, but little is known about the effect of the surface amendments on subsoil chemistry. We conducted a greenhouse column experiment to investigate how different surface amendments affected plant growth and subsoil chemistry in highly acidic minespoil material. Columns were filled with shale minespoil material (pH approximately 2.5), amended with CaCO3, CaSO4 x 2H2O (gypsum), and two rates of compost, and seeded with birdsfoot trefoil (Lotus corniculatus L.) and 'Kentucky 31' tall fescue (Festuca arundinacea Schreb.). We measured leachate and plant growth over a 170-d period with extensive irrigation. Without CaCO3, plants could only grow at the high compost rate (68.8 g kg(-1)), even though the soil pH in those treatments was below 3.5, indicating the capability of natural organic matter to detoxify Al(3+) by forming Al-organic matter complexes. Compost had no effect on the subsoil. When CaCO3 or gypsum was added to the surface, extractable Ca increased in the subsoil, but there was no relevant increase in subsoil pH. Even in the first 5 cm of subsoil material, extractable Al did not decrease very much, possibly because a jurbanite-like solid phase controlled subsoil Al(3+) activities. During the reclamation of highly acidic minespoil material one should therefore not expect significant effects of the surface treatment on the untreated subsoil. A sufficient root zone would have to be achieved by incorporating the liming agent down to the desired rooting depth.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号