首页 | 本学科首页   官方微博 | 高级检索  
     检索      

青藏高原内陆典型冰川区"冰川-径流"汞传输过程
引用本文:孙学军,王康,郭军明,康世昌,张国帅,黄杰,丛志远,张强弓.青藏高原内陆典型冰川区"冰川-径流"汞传输过程[J].环境科学,2016,37(2):482-489.
作者姓名:孙学军  王康  郭军明  康世昌  张国帅  黄杰  丛志远  张强弓
作者单位:中国科学院青藏高原研究所青藏高原环境变化与地表过程重点实验室, 北京 100101;中国科学院大学, 北京 100049;加拿大曼尼托巴大学环境与地理学院地球观测科学中心, 温尼伯 MB R3T 2N2;中国科学院青藏高原研究所青藏高原环境变化与地表过程重点实验室, 北京 100101;中国科学院大学, 北京 100049;中国科学院寒区旱区环境与工程研究所冰冻圈科学国家重点实验室, 兰州 730000;中国科学院青藏高原地球科学卓越创新中心, 北京 100101;中国科学院青藏高原研究所青藏高原环境变化与地表过程重点实验室, 北京 100101;中国科学院青藏高原研究所青藏高原环境变化与地表过程重点实验室, 北京 100101;中国科学院青藏高原研究所青藏高原环境变化与地表过程重点实验室, 北京 100101;中国科学院青藏高原地球科学卓越创新中心, 北京 100101;中国科学院青藏高原研究所青藏高原环境变化与地表过程重点实验室, 北京 100101;中国科学院青藏高原地球科学卓越创新中心, 北京 100101
基金项目:国家自然科学基金项目(41371088,41225002);中国科学院战略性先导科技专项(B类)(XDB03030504)
摘    要:为研究青藏高原内陆典型冰川区"冰川-径流"汞输送过程,于2011年8月15日~9月9日对青藏高原内陆念青唐古拉山脉扎当冰川-曲嘎切流域内雪坑、冰川融水以及径流进行了采样,检测了不同环境介质中汞浓度,并分析了不同介质中汞的控制因素及输送过程.结果表明,扎当冰川-曲嘎切流域内雪坑、冰川融水以及曲嘎切径流中总汞浓度分别为(3.79±5.12)、(1.06±0.77)和(1.02±0.24)ng·L-1,处于全球背景水平.不同环境介质中均以颗粒态汞为主,受到总悬浮颗粒物和径流量的控制.随着气温升高,冰川消融,受其补给的河流径流量增加.不同环境介质间,从冰川末端融水到曲嘎切下游河水,总汞浓度峰值时间分别是14:00、16:00和20:00以后,体现了汞在"冰川-径流"环境系统中随冰川消融、径流量变化的释放和传输过程.冰川补给河流汞的传输受多种因素制约,气候变化背景下,冰川消融和径流增加带来的侵蚀将在汞释放及其向下游传输发挥日益重要的作用.

关 键 词:青藏高原  冰川  河流    传输
收稿时间:2015/8/23 0:00:00
修稿时间:2015/9/23 0:00:00

Mercury Transport from Glacier to Runoff in Typical Inland Glacial Area in the Tibetan Plateau
SUN Xue-jun,WANG Kang,GUO Jun-ming,KANG Shi-chang,ZHANG Guo-shuai,HUANG Jie,CONG Zhi-yuan and ZHANG Qiang-gong.Mercury Transport from Glacier to Runoff in Typical Inland Glacial Area in the Tibetan Plateau[J].Chinese Journal of Environmental Science,2016,37(2):482-489.
Authors:SUN Xue-jun  WANG Kang  GUO Jun-ming  KANG Shi-chang  ZHANG Guo-shuai  HUANG Jie  CONG Zhi-yuan and ZHANG Qiang-gong
Institution:Key Laboratory of Tibetan Environment Changes and Land Surface Processes, Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Beijing 100101, China;University of Chinese Academy of Sciences, Beijing 100049, China;Center for Earth Observation Science, Department of Environment and Geography, University of Manitoba, Winnipeg MB R3T 2N2, Canada;Key Laboratory of Tibetan Environment Changes and Land Surface Processes, Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Beijing 100101, China;University of Chinese Academy of Sciences, Beijing 100049, China;State Key Laboratory of Cryospheric Science, Cold and Arid Regions Environmetal and Engineering Research Institute, Chinese Academy of Sciences, Lanzhou 730000, China;Center for Excellence in Tibetan Plateau Earth Sciences, Chinese Academy of Sciences, Beijing 100101, China;Key Laboratory of Tibetan Environment Changes and Land Surface Processes, Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Beijing 100101, China;Key Laboratory of Tibetan Environment Changes and Land Surface Processes, Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Beijing 100101, China;Key Laboratory of Tibetan Environment Changes and Land Surface Processes, Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Beijing 100101, China;Center for Excellence in Tibetan Plateau Earth Sciences, Chinese Academy of Sciences, Beijing 100101, China;Key Laboratory of Tibetan Environment Changes and Land Surface Processes, Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Beijing 100101, China;Center for Excellence in Tibetan Plateau Earth Sciences, Chinese Academy of Sciences, Beijing 100101, China
Abstract:To investigate the transport of mercury from glacier to runoff in typical inland glacial area in the Tibetan Plateau, we selected Zhadang glacier and Qugaqie river Basin located in the Nyainqêntanglha Range region and collected samples from snow pit, glacier melt-water and Qugaqie river water during 15th August to 9th September 2011. Mercury speciation and concentrations were determined and their distribution and controlling factors in different environmental compartments were analyzed. The results showed that the average THg concentrations were (3.79±5.12) ng ·L-1,(1.06±0.77) ng·L-1and (1.02±0.24) ng ·L-1 for glacier snow, glacier melt-water and Qugaqie river water, respectively, all of which were at the global background levels. Particulate-bound mercury accounted for large proportion of mercury in all environmental matrices, while mercury in glacial melt-water was controlled by total suspended particle, and mercury in Qugaqie river water co-varied with runoff. With the increase of temperature, glacier melted and released water as well as mercury into glacier-fed river. Total mercury concentrations in glacier melt water, upstream and downstream peaked at 14:00, 16:00 and after 20:00, respectively, reflecting the process of mercury release from glacier and its subsequent transport in the glacier fed river. The transport of riverine mercury was controlled by multiple factors. Under the context of climate change, glacier ablation and the increasing runoff will play increasingly important roles in mercury release and transport.
Keywords:Tibetan Plateau  glacier  river  mercury  transport
本文献已被 CNKI 万方数据 等数据库收录!
点击此处可从《环境科学》浏览原始摘要信息
点击此处可从《环境科学》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号