首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Formation potentials of bromate and brominated disinfection by-products in bromide-containing water by ozonation
Authors:Tao Lin  Shouke Wu  Wei Chen
Institution:1. Ministry of Education Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Hohai University, Nanjing, 210098, People’s Republic of China
2. College of Environment, Hohai University, Nanjing, 210098, People’s Republic of China
Abstract:The ozonation involved in drinking water treatment raises issues of water quality security when the raw water contains bromide (Br?). Br? ions may be converted to bromate (BrO3 ?) during ozonation and some brominated disinfection by-products (Br-DBPs) in the following chlorination. In this study, the effects of ozone (O3) dosage, contact time, pH, and Br? and ammonia (NH3-N) concentrations on the formation of BrO3 ? and Br-DBPs have been investigated. The results show that decreasing the initial Br? concentration is an effective means of controlling the formation of BrO3 ?. When the concentration of Br? was lower than 100 μg/L, by keeping the ratio of O3 dosage to dissolved organic carbon (DOC) concentration at less than 1, BrO3 ? production was effectively suppressed. The concentration of BrO3 ? steadily increased with increasing O3 dosage at high Br? concentration (>900 μg/L). Additionally, a longer ozonation time increased the concentrations of BrO3 ? and total organic bromine (TOBr), while it had less impact on the formation potentials of brominated trihalomethanes (Br-THMFP) and haloacetic acids (Br-HAAFP). Higher pH value and the presence of ammonia may lead to an increase in the formation potential of BrO3 ? and Br-DBPs.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号