基于深度学习模型的广州市大气PM2.5和PM10浓度预测 |
| |
引用本文: | 黄春桃,范东平,卢集富,廖启丰. 基于深度学习模型的广州市大气PM2.5和PM10浓度预测[J]. 环境工程, 2021, 39(12): 135-140. DOI: 10.13205/j.hjgc.202112020 |
| |
作者姓名: | 黄春桃 范东平 卢集富 廖启丰 |
| |
作者单位: | 1. 广州华立学院, 广州 511300; |
| |
基金项目: | 广东省重点学科培育项目(粤教研函[2017]1号)广东省教育厅重点科研平台青年创新人才项目(自然科学)(2018KQNCX35)。 |
| |
摘 要: | 精准预测大气污染颗粒物PM2.5、PM10浓度能为大气污染防治提供科学依据,但目前较多PM2.5和PM10浓度预测在缺少污染源排放清单和能见度数据时,预测精度不高。而目前深度学习模型应用于PM2.5和PM10浓度预测的研究还鲜见报道。基于广州市2015年6月1日—2018年1月10日的空气质量和气象监测历史数据,分别构建了随机森林模型(RF)、XGBoost模型2种传统的机器学习模型和长短时记忆网络(LSTM)、门控循环单元网络(GRU)2种深度学习模型,并对广州市的PM2.5、PM10日均浓度值进行预测。结果表明:在缺少污染源排放清单和能见度数据时,4种模型也能较好地预测PM2.5、PM10日均浓度。根据MSE、RMSE、MAPE、MAE和R2等评价指标,对4个模型的PM2.5、PM10预测效果进行测评,得出深度学习GRU模型预测效果均为最佳,RF模型的预测结果均为最差。相比目前研究及应用较多的RF模型、XGBoost模型、LSTM模型,基于深度学习的GRU模型能更好地预测PM2.5、PM10浓度。
|
关 键 词: | PM2.5 PM10 深度学习模型 浓度预测 影响因素 |
收稿时间: | 2021-05-12 |
PREDICTION OF PM2.5 AND PM10 CONCENTRATION IN GUANGZHOU BASED ON DEEP LEARNING MODEL |
| |
Affiliation: | 1. Guangzhou Huali College, Guangzhou 511300, China;2. South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou 510530, China;3. Guangdong Kedilong Technology Co., Ltd, Guangzhou 510000, China |
| |
Abstract: | Precisely predicting the concentration of PM2.5 and PM10 in air pollution can provide a scientific basis for the prevention and control of air pollution. However, in the absence of pollution source emission inventory and visibility data, the prediction accuracy of the existing PM2.5 and PM10 concentration prediction methods are not high. In addition, it is rarely reported that the current deep learning models have been applied successively to PM2.5 and PM10 concentration prediction research. Based on the historical air quality monitoring data and weather monitoring historical data in Guangzhou from June 1, 2015 to January 10, 2018, two traditional machine learning models(random forest model(RF) and XGBoost model) and two deep learning models(short-long-term memory network(LSTM) and gated recurrent unit network(GRU) were constructed respectively, to predict the daily average concentration of PM2.5 and PM10 in Guangzhou. The results showed that the four models could also well predict the daily average concentration of PM2.5 and PM10 in the absence of pollution source emission inventory and visibility data. According to the evaluation metrics, i.e., MSE, RMSE, MAPE, MAE, and R2, the PM2.5 and PM10 prediction effects of the four models were evaluated. The results indicated that the prediction effect of the deep GRU model was the best and the prediction results of the RF model were the worst. Compared with the commonly used RF model, XGBoost model, and LSTM model, the GRU model based on deep learning could better predict PM2.5 and PM10 concentration. |
| |
Keywords: | |
|
| 点击此处可从《环境工程》浏览原始摘要信息 |
|
点击此处可从《环境工程》下载免费的PDF全文 |
|