首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Evaluation of the potential impact of polluted sediments using Manila clam Ruditapes philippinarum: bioaccumulation and biomarker responses
Authors:Eun-Ji Won  Seongjin Hong  Kongtae Ra  Kyung-Tae Kim  Kyung-Hoon Shin
Institution:Department of Environmental Marine Sciences, College of Science and Technology, Hanyang University, Ansan, 426-791, South Korea.
Abstract:An assessment was made to monitor the short-term impact of heavily polluted sediments that may move out from the brackish man-made Lake Shihwa outside of the sea dike due to operations of a tidal power plant. Here, we exposed the Manila clam Ruditapes philippinarum collected from the western coast of Korea to natural sediment under lab condition for 96?h. Sediments were collected from Lake Shihwa and outside of the sea dike representing polluted and reference conditions, respectively. The results of chemical analysis revealed that the concentrations of nonylphenol and heavy metals in water and sediment from the inner region of Lake Shihwa were significantly higher than those of reference sediments. After 48 and 96?h of exposure, 30 specimens of clams were sampled from each experimental condition, and concentrations of nonylphenol and metals were measured in clams, water, and sediments. Several biomarkers, including concentrations of metallothionein-like proteins, and activities of the antioxidant enzymes glutathione S-transferase and catalase were determined in clams to characterize the effects of polluted sediments to clams. After 96?h of exposure, R. philippinarum assimilated nonylphenol up to 71 times compared to initial concentrations. However, there was no apparent uptake of heavy metals into the clams. Additionally, antioxidant enzymes exhibited higher activities in clams exposed to the polluted sediment. The results of the present study with physiological responses in R. philippinarum suggest that sediment transportation caused by the operation of a tidal power plant in Lake Shihwa will have striking effects on benthic organisms in the adjacent coastal area.
Keywords:
本文献已被 PubMed SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号