首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Variability of PM2.5 and O3 concentrations and their driving forces over Chinese megacities during 2018-2020
Institution:2. Department of Precision Machinery and Precision Instrumentation, University of Science and Technology of China, Hefei 230026, China;3. Center for Excellence in Regional Atmospheric Environment, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China;4. Key Laboratory of Environmental Optics and Technology, Anhui Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Hefei 230031, China
Abstract:Recently, air pollution especially fine particulate matters (PM2.5) and ozone (O3) has become a severe issue in China. In this study, we first characterized the temporal trends of PM2.5 and O3 for Beijing, Guangzhou, Shanghai, and Wuhan respectively during 2018-2020. The annual mean PM2.5 has decreased by 7.82%-33.92%, while O3 concentration showed insignificant variations by -6.77%-4.65% during 2018-2020. The generalized additive models (GAMs) were implemented to quantify the contribution of individual meteorological factors and their gas precursors on PM2.5 and O3. On a short-term perspective, GAMs modeling shows that the daily variability of PM2.5 concentration is largely related to the variation of precursor gases (R = 0.67-0.90), while meteorological conditions mainly affect the daily variability of O3 concentration (R = 0.65-0.80) during 2018-2020. The impact of COVID-19 lockdown on PM2.5 and O3 concentrations were also quantified by using GAMs. During the 2020 lockdown, PM2.5 decreased significantly for these megacities, yet the ozone concentration showed an increasing trend compared to 2019. The GAMs analysis indicated that the contribution of precursor gases to PM2.5 and O3 changes is 3-8 times higher than that of meteorological factors. In general, GAMs modeling on air quality is helpful to the understanding and control of PM2.5 and O3 pollution in China.
Keywords:Corresponding authors    Air pollution  2  5  Meteorology  COVID-19 lockdown
点击此处可从《环境科学学报(英文版)》浏览原始摘要信息
点击此处可从《环境科学学报(英文版)》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号