首页 | 本学科首页   官方微博 | 高级检索  
     检索      


High-resolution simulation of volcanic sulfur dioxide dispersion over the Miyake Island
Authors:Naoko Seino  Hidetaka Sasaki  Junji Sato  Masaru Chiba
Institution:Meteorological Research Institute, Tsukuba, Japan
Abstract:After severe eruptions of the volcano at Miyake Island in August 2000, a large amount of volcanic gas was released into the atmosphere. To simulate flows and dispersion of sulfur dioxide (SO2) over Miyake Island, a set of numerical models was developed. The multi-nesting method was adopted to reflect a realistic meteorological field and to sufficiently resolve the flow over the island with a diameter of 8 km. The outermost model was the Regional Spectral Model (RSM) of the Japan Meteorological Agency (JMA) with a horizontal grid size of 10 km. Finer atmospheric structure was simulated with the nonhydrostatic model jointly developed by the Meteorological Research Institute and the Numerical Prediction Division of JMA (MRI/NPD-NHM) with grid intervals of 2 km, 400 m and 100 m. Realistic topography of the island was represented in the innermost model. The Lagrangian particle method was applied to the dispersion model, which is driven by the meteorological field of the 100 m grid MRI/NPD-NHM. The random walk procedure was used to represent the turbulent diffusion. The model was verified in four cases. Simulated SO2 concentrations agreed well with observed concentrations at a monitoring station including temporal variation. Under a large synoptic change, however, accurate prediction became difficult. Further numerical experiments have been done to investigate characteristics of the flow and the distribution of SO2. Steady inflows, classified according to the surface wind speed and direction, were assumed. Simulated SO2 distribution on the ground apparently depends on the surface wind. Under relatively weak inflow, there is a large diurnal change in SO2 distribution, affected by the thermally induced flow. SO2 gas is widely spread downstream in the nighttime but hardly reaches the coastal area in the daytime. On the other hand, SO2 gas steadily reached the downstream coast with little diurnal variation under the stronger inflow. Ground temperature, as well as the static stability of the inflow, also influences downstream wind, turbulent diffusivity and SO2 distribution.
Keywords:Nonhydrostatic model  Multi-nesting  Dispersion model  Volcanic SO2
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号