首页 | 本学科首页   官方微博 | 高级检索  
     检索      


On the heating environment in street canyon
Authors:Rizwan Ahmed Memon  D Y C Leung
Institution:1.Department of Mechanical Engineering,Mehran University of Engineering & Technology,Jamshoro, Sindh,Pakistan;2.Department of Mechanical Engineering,University of Hong Kong,Pokfulam,Hong Kong
Abstract:This study investigates the impact of building aspect ratio (building-height-to-street-canyon-width-ratio), wind speed and surface and air-temperature difference (Δθs−a) on the heating environment within street canyon. The Reynolds-averaged Navier-Stokes (RANS) and energy transport equations were solved with Renormalization group (RNG) theory version of k-e{\varepsilon} turbulence model. The validation process demonstrated that the model could be trusted for simulating air-temperature and velocity trends. The temperature and velocity patterns were discussed in idealized street canyons of different aspect ratios (0.5–2.0) with varying ambient wind speeds (0.5–1.5 m/s) and Δθs−a (2–8 K). Results show that air-temperatures are directly proportional to bulk Richardson number (R b ) for all but ground heating situation. Conversely, air-temperatures increase significantly across the street canyon with a decrease in ambient wind speed; however, the impact of Δθs−a was negligible. Clearly, ambient wind speed decreases significantly as it passes over higher AR street canyons. Notably, air-temperatures were the highest when the windward wall was heated and the least during ground heating. Conversely, air-temperatures were lower along the windward side but higher within the street canyon when the windward wall was heated.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号