首页 | 本学科首页   官方微博 | 高级检索  
     检索      

RSI-MO反应器强化沼气原位深度脱硫研究
引用本文:阮仁俊,项经纬,赵俊杰,赵昌爽,孙俊伟,赵伟,操家顺.RSI-MO反应器强化沼气原位深度脱硫研究[J].中国环境科学,2021,41(1):247-253.
作者姓名:阮仁俊  项经纬  赵俊杰  赵昌爽  孙俊伟  赵伟  操家顺
作者单位:1. 安徽工程大学建筑工程学院, 安徽 芜湖 241000;2. 河海大学环境学院, 江苏 南京 210098
基金项目:国家自然科学基金资助项目(51808001);科学与研究预研项目(Xjky110201911);大学生科研项目(2020DZ15);安徽工程大学大学生创新创业训练计划项目(202010363118,S201910363292);安徽省高等学校自然科学基金项目(KJ20200A0365)
摘    要:为实现剩余污泥厌氧消化沼气原位深度脱硫,采用向反应器中嵌入最佳剂量(20g/L)废铁屑并引入微氧条件,构建废铁屑-微氧(RSI-MO)工艺,探索微氧效应对厌氧消化稳定性、效率、脱硫的影响.试验分7阶段,P1阶段对照组,P2阶段加入RSI,P3~P7阶段逐步提高O2剂量. 结果表明,MO激发硫氧化菌生物脱硫,促发RSI化学腐蚀而生成铁硫沉淀物,耦合生物脱硫与化学除硫作用.P3~P7阶段,随O2剂量的提高,H2S浓度呈降低趋势,而残余O2浓度呈升高趋势.综合来看,P6阶段反应器厌氧消化效率和脱硫效率最佳,甲烷产率达301.1mL/gCOD、沼气H2S浓度为113mg/m3,较P1阶段分别提高37.65%和99.40%.通过硫平衡分析发现,P6阶段存在于固、液、气三相硫元素含量分别占84.0%、11.9%、0.21%.表明RSI-MO工艺可实现沼气原位深度脱硫.

关 键 词:微氧效应  厌氧消化  甲烷产率  脱硫效率  硫平衡  
收稿时间:2020-05-28

Study of combining rusty scrap iron with micro-oxygen to enhance biogas in-situ deep desulfurization
RUAN Ren-jun,XIANG Jing-wei,ZHAO Jun-jie,ZHAO Chang-shuang,SUN Jun-wei,ZHAO Wei,CAO Jia-shun.Study of combining rusty scrap iron with micro-oxygen to enhance biogas in-situ deep desulfurization[J].China Environmental Science,2021,41(1):247-253.
Authors:RUAN Ren-jun  XIANG Jing-wei  ZHAO Jun-jie  ZHAO Chang-shuang  SUN Jun-wei  ZHAO Wei  CAO Jia-shun
Institution:1. School of Architecture and Civil Engineering, Anhui Polytechnic University, Wuhu 241000, China;2. College of Environment, Hohai University, Nanjing 210098, China
Abstract:To achieve biogas in-situ deep desulfurization of waste-activated sludge (WAS) anaerobic digestion. An integrated rusty scrap iron-micro-oxygen (RSI-MO) anaerobic digestion process was constructed embedding optimal RSI dosage (20g/L) and providing micro-oxygen condition to explore the influence of RSI-MO process on anaerobic digestion in-situ desulfurization performance. This semi-continuous anaerobic/microaerobic experiment was carried out in seven stages (P1~P7). The first stage (P1) was set as a control group. RSI was added in the second stage (P2). And increasing O2 levels were introduced stepwise in P3~P7stages. The results showed that supplementary O2 induced sulfur-oxidizing bacteria microbial oxidation of sulfide to elemental sulfur and chemical oxidative corrosion of iron to form ironic sulfide precipitate. It promoted the sulfide solidification by coupling of biological desulfurization with chemical desulfurization. From P3 to P7, the content of H2S in biogas decreased and residual oxygen increased with rising of O2 dose, respectively. The optimum performance was considered on the basis of anaerobic digestion efficiency and desulfurization property, which was obtained in P6. The methane yield was 301.1mL/gCOD, and the H2S concentration was 113mg/m3. The average methane yield increased by 37.65% comparing with P1. What’s more, the H2S removal efficiency in biogas decreased by 99.40%. According to the analysis of sulfur balance, it was found that the sulfur contents in solid-liquid-gas three phases accounted for 84.0, 11.9 and 0.21 percent of total sulfur in P6, respectively. It is indicated that the integrated process of RSI-MO anaerobic digestion could benefit biogas in-situ deep desulfurization.
Keywords:micro-oxygen effect  iron corrosion  methane yield  desulfurization efficiency  sulfur balance  
本文献已被 CNKI 等数据库收录!
点击此处可从《中国环境科学》浏览原始摘要信息
点击此处可从《中国环境科学》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号