首页 | 本学科首页   官方微博 | 高级检索  
     


Accessibility of starch to enzymatic degradation in injection-molded starch-plastic composites
Authors:S. H. Imam  S. H. Gordon  A. Burgess-Cassler  R. V. Greene
Affiliation:(1) The United States Department of Agriculture, Biopolymer Research Unit, National Center for Agricultural Utilization Research, Agricultural Research Service, 61604 Peoria, Illinois;(2) Present address: Saliva Diagnostic Systems, 11719 NE 95th Street Suite G, 98682 Vancover, Washington
Abstract:Most of the starch in starch-polyethylene-co-acrylic acid (EAA)-polyethylene (PE) composites prepared by injection molding was not accessible to starch-hydrolyzing enzymes. Even when these composites were treated with enzyme in the presence of Triton X-100 for 96 h, little starch hydrolysis was observed. However, when the starch-plastic material was pulverized, both the extent and the rate of starch hydrolysis increased dramatically, with about 70% hydrolysis of the starch within 18 h. Reactions carried out for up to 96 h showed that, while the enzyme was active, the reaction reached a plateau, achieving a total of 80% starch hydrolysis. Fourier transform infrared (FTIR) spectroscopy revealed that only starch, and not EAA or PE, was affected by enzyme in pulverized samples. Results indicated that while 80% of the starch in these composites was transiently inaccessible, perhaps due to EAA and PE forming an impermeable barrier to the enzyme, the other 20% remained inaccessible to enzymes. Also, the rate of starch digestion as determined by solubilized reducing sugar correlated with the particle size of the pulverized material, suggesting that a large available surface area is critical for rapid starch degradation in such composites.The mention of firms names or trade products does not imply that they are endorsed or recommended by the U.S. Department of Agriculture over the firms or similar products not mentioned. All programs and services of the U.S. Department of Agriculture are offered on a nondiscriminatory basis without regard to race, color, national origin, religion, sex, marital status, or handicap.
Keywords:Starch degradation  starch-plastic  composite  starch hydrolysis  amylase(s)
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号