首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Analytical,Risk Assessment,and Remedial Implications Due to the Co‐Presence of Polychlorinated Biphenyls and Terphenyls at Inactive Hazardous Waste Sites
Authors:James J Pagano
Abstract:Investigations conducted at three inactive hazardous waste sites in New York State have confirmed the co‐presence of polychlorinated hiphenyls (PCBs) and polychlorinated terphenyls (PCTs) in soils, sediments, and biota. The PCTs at all three sites were positively identified as Aroclor 5432, with the most probable source being the hydraulic fluid Pydraul 312A utilized for high‐temperature applications. The identification of the lower‐chlorinated PCT formulations in environmental samples is problematical, since PCT Aroclors 5432 and 5442 are not chromatographically distinct from the higher‐chlorinated (PCB) Aroclors 1254, 1260, 1262, and 1268 using conventional gas chromatography–electron capture detection. Results from this study indicate that U.S. Environmental Protection Agency (USEPA) approved PCB methods routinely utilized by most commercial laboratories based on Florisil adsorption column chromatography cleanup are inadequate to produce valid chromatographic separation and quantitative results with soils, sediment, and biota samples containing both PCBs and PCTs. The presence of co‐eluting PCBs and PCTs precludes accurate quantitation due to significant differences in PCB/PCT electron capture detector response factors, and the potential for misidentification of PCT Aroclors as higher chlorinated PCB Aroclors. A method based on alumina column adsorption chromatography was used, allowing for the accurate identification and quantitation of PCB and PCT Aroclors. The results of this study suggest that the utilization of alumina adsorption column separation may have applicability and regulatory significance to other industrially contaminated sites which historically used Pydraul 312A. Inferences.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号