首页 | 本学科首页   官方微博 | 高级检索  
     

基于改进模糊聚类法和CPSO.-ISSVM的母线负荷预测
引用本文:杨波. 基于改进模糊聚类法和CPSO.-ISSVM的母线负荷预测[J]. 防灾减灾工程学报, 2017, 0(5): 25-33
作者姓名:杨波
作者单位:四川明星电力股份有限公司,四川遂宁 629000
摘    要:针对大型冶金企业专用母线负荷种类多、分布不均、规律性弱等特点,利用自组织特征映射神经网络(self-organizing feature map, SOM)对模糊聚类法进行改进,以选择待预测日的相似日,通过db4小波对相似日负荷数据进行分解、去噪和重构处理后作为后期预测模型的训练样本;采用混沌粒子群算法(chaos particle swarm optimization,CPSO)对最小二乘支持向量机(least square support vector machine, LSSVM)算法的惩罚参数和核函数覆盖宽度进行优化,构造了基于CPSO和LSSVM的母线负荷预测模型。仿真结果表明:该负荷预测模型,将预测结果的相对误差降低到1.998%,预测精度达到了97%,提高了专用母线负荷预测准确性。

关 键 词:SOM; 模糊聚类法; db4小波; CPSO-LSSVM; 母线负荷预测

Bus load forecasting based on improved fuzzy clusteringmethod and CPSO-L SSVM algorithm
YANG Bo. Bus load forecasting based on improved fuzzy clusteringmethod and CPSO-L SSVM algorithm[J]. Journal of Disaster Prevention and Mitigation Engineering, 2017, 0(5): 25-33
Authors:YANG Bo
Affiliation:Sichuan Mingxing Electric Power Co , Ltd , Suining Sichuan 629000 , China
Abstract:Aiming at the large metallurgical enterprise special bushas loads variety, unevendistribution, weak regularity characteristics, using the self- organizing feature map(SOM) improvingfuzzy clustering method to select the similar day as the predicting day, then the similar day load dataas training samples of late period forecasting model is decomposed , de--noising and reconstructed withdb4 wavelet, decomposing, denoising and reconstructing the similar day load data, uses the chaosparticle swarmoptimization(CPSO) algorithm optimize the penalties parameters and kernel functioncoverage of the least square support vector machine(I SSV M) algorithm, constructes the bus loadforecasting model based on CPSO- LSSVM. The simulation result shows that the relative error ofprediction result reduced to 1 .998%, and the prediction accuracy reached 97%, can improve theprediction accuracy of the special bus load.
Keywords:
点击此处可从《防灾减灾工程学报》浏览原始摘要信息
点击此处可从《防灾减灾工程学报》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号