首页 | 本学科首页   官方微博 | 高级检索  
     

基于布谷鸟搜索优化的光伏电站辐照强度预测
引用本文:张琦,武小梅,田明正,谢海波. 基于布谷鸟搜索优化的光伏电站辐照强度预测[J]. 防灾减灾工程学报, 2017, 0(4): 22-28
作者姓名:张琦  武小梅  田明正  谢海波
作者单位:广东工业大学自动化学院,广东广州, 510006
摘    要:针对光伏电站日前小时短期辐照强度的预测准确性问题,且考虑到支持向量机的学习参数对预测模型的性能有较大影响,为进一步提高数据的预测精度,利用布谷鸟搜索算法对支持向量机的惩罚因子c和核参数g进行优化,提出了一种基于布谷鸟搜索算法和支持向量回归的组合预测方法。仿真结果表明:该方法大大提高了光伏辐照强度预测的准确性和精度,可行且高效,适用于光伏在线预测。

关 键 词:光伏电站; 辐照强度预测; 布谷鸟搜索算法;支持向量机;参数优化

Prediction of radiation intensity for photovoltaic power plant based on cuckoo searchoptimization
Zhang Qi,WU Xiaomei,Tian Mingzheng,Xie Haibo. Prediction of radiation intensity for photovoltaic power plant based on cuckoo searchoptimization[J]. Journal of Disaster Prevention and Mitigation Engineering, 2017, 0(4): 22-28
Authors:Zhang Qi  WU Xiaomei  Tian Mingzheng  Xie Haibo
Affiliation:School of Automation, Guangdong University of Technology, Guangzhou Guangdong 510006 , China
Abstract:Aiming at the problem of the prediction accuracy for day ahead short- term radiationintensity of photovoltaic power plants, and considering the learning parameters of support vectormachine(SVM) have great influence on the performance of predicting model, in order to improvefurther the accuracy of prediction data, introduces the cuckoo search algorithm to optimize the penaltyfactor c and the kernel parameter g of SVM, puts forward a combined forecasting method based oncuckoo search and support vector regression. The simulation result shows that this method canimprove greatly the prediction accuracy and precision of photovoltaic radiation intensity, it '' s feasibleand efficient, can apply to photovoltaic online prediction.
Keywords:
点击此处可从《防灾减灾工程学报》浏览原始摘要信息
点击此处可从《防灾减灾工程学报》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号