首页 | 本学科首页   官方微博 | 高级检索  
     

基于混沌多目标遗传算法的分布式电源规划
引用本文:王世玮,张迪,魏明磊,潘一夫. 基于混沌多目标遗传算法的分布式电源规划[J]. 防灾减灾工程学报, 2017, 0(2): 1-6
作者姓名:王世玮  张迪  魏明磊  潘一夫
作者单位:广东工业大学自动化学院,广东广州 510006
基金项目:国家自然科学基金资助项目(513770265)。
摘    要:针对多目标遗传算法(multi-objective genetic algorithm,MGA)在解决分布式电源(dis-tributed generation,DG)优化问题上存在的不足,加入混沌变量、虛拟适应度、精英保留策略等方法进行多目标改进,提出一种改进混沌多目标遗传算法(improved chaotic optimization multi-ob-jective genetic algorithm,ICMGA),并依据种群进化状态自适应调整搜索精度,提高了算法搜索效率和收敛速度。结果表明:与NSGA_II算法相比,ICMGA算法不但寻优能力更强,收敛速度快,还具有良好的经济性。能够为分布式电源优化问题提供优良的解决方案。

关 键 词:分布式电源; 混沌多目标遗传算法;精英保留策略;混沌变量

Distributed generation planning based on the chaotic multi- -objective genetic algorithm
WANG Shiwei,ZHANG Di,WEI Minglei,PAN Yifu. Distributed generation planning based on the chaotic multi- -objective genetic algorithm[J]. Journal of Disaster Prevention and Mitigation Engineering, 2017, 0(2): 1-6
Authors:WANG Shiwei  ZHANG Di  WEI Minglei  PAN Yifu
Affiliation:School of Automation , Guangdong University of Technology , Guangzhou Guangdong 510006 , China
Abstract:Aiming at the weakness of multi- objective genetic algorithm solving the problem ofdistributed generation optimization, by adding the methods of Chaotic variables, virtual fitness, elitereserved strategy, etc. improves the algorithm, puts forward an improved chaotic optimization multiobjective genetic algorithm. According to the population evolution self adaptability changes the searchstep to improve the searching efficiency and convergence speed of the algorithm. The result shows thatcompared with the NSGA_ II method, the ICMGA algorithm has stronger optimization capability, fasterconvergence speed, and better economy. It can effectively solve the multi objective optimizationproblem of distributed generation.
Keywords:
点击此处可从《防灾减灾工程学报》浏览原始摘要信息
点击此处可从《防灾减灾工程学报》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号