首页 | 本学科首页   官方微博 | 高级检索  
     检索      

Ag/Ag2O/g-C3N4/BiVO4复合光催化体系降解盐酸四环素机理研究
引用本文:许洋,蒲生彦,季雯雯,杨曾.Ag/Ag2O/g-C3N4/BiVO4复合光催化体系降解盐酸四环素机理研究[J].环境科学研究,2021,34(12):2841-2849.
作者姓名:许洋  蒲生彦  季雯雯  杨曾
作者单位:1.成都理工大学, 地质灾害防治与地质环境保护国家重点实验室, 四川 成都 610059
基金项目:国家重点研发计划项目2020YFC1808300国家自然科学基金项目42077185
摘    要:为提高钒酸铋(BiVO4)对盐酸四环素(TC-HCl)在水溶液中的降解效率,以银基材料(Ag/Ag2O)和石墨相氮化碳(g-C3N4)共同改性BiVO4,通过水热法、煅烧法、湿浸渍法、沉淀和热分解法分步制备了Ag/Ag2O/g-C3N4/BiVO4四元复合材料;采用X-射线衍射(XRD)、扫描电子显微镜(SEM)、X-射线光电子能谱(XPS)及紫外-可见漫反射光谱法(UV-vis DRS)等方法对复合材料的形貌结构、元素分布及光学性质进行了表征. 结果表明:①沉积了Ag/Ag2O粒子后,复合材料对TC-HCl的吸附能力显著提高. ②纳米Ag粒子的表面等离子体共振效应(SPR)以及g-C3N4的协同作用拓宽了光响应范围,表现出更好的光催化性能. ③相较于BiVO4、g-C3N4及g-C3N4/BiVO4,该复合材料对TC-HCl的降解效果最佳,降解率可达89.19%,且经过4次循环使用后仍能保持74.8%的降解率. ④UV-vis及XPS分析证明,该复合材料的可见光响应拓展至548 nm,可吸收更多可见光. ⑤体系自由基捕获试验证明,·O2-和h+在光催化降解TC-HCl过程中发挥主要作用,且h+的作用大于·O2-. 研究显示,Ag/Ag2O/g-C3N4/BiVO4是一种高效稳定的复合光催化剂,其在处理TC-HCl抗生素废水方面具有潜在的应用前景. 

关 键 词:光催化    石墨相氮化碳(g-C3N4)    氧化银    钒酸铋(BiVO4)
收稿时间:2021-05-12

Mechanism Study on Degradation of Tetracycline Hydrochloride by Ag/Ag2O/g-C3N4/BiVO4 Composite Photocatalytic System
Institution:1.State Key Laboratory of Geohazard Prevention and Geoenvironmental Protection, Chengdu University of Technology, Chengdu 610059, China2.State Environmental Protection Key Laboratory of Synergetic Control and Joint Remediation for Soil & Water Pollution, School of Ecological and Environmental Sciences, Chengdu University of Technology, Chengdu 610059, China
Abstract:In order to improve the degradation efficiency of bismuth vanadate (BiVO4) on tetracycline hydrochloride (TC-HCl) in aqueous solution, silver-based material (Ag/Ag2O) and graphitic phase carbon nitride (g-C3N4) were used to co-modify BiVO4, and the Ag/Ag2O/g-C3N4/BiVO4 quaternary composites were constructed by hydrothermal, calcination, wet impregnation, precipitation and thermal decomposition methods in a stepwise manner. The composites were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), X-ray photoelectron spectroscopy (XPS) and Ultraviolet-visible diffuse reflectance spectrometry (UV-vis DRS) for their morphological structure, elemental distribution and optical properties. The experimental results showed that: (1) The deposition of Ag/Ag2O particles significantly increased the adsorption capacity of the material for TC-HCl. (2) The surface plasmon resonance effect (SPR) of Ag nanoparticles and the synergistic effect of g-C3N4 broadened the photoresponse range and improved the photocatalytic performance. (3) Compared with BiVO4, g-C3N4 and g-C3N4/BiVO4, the composite had the best degradation effect on TC-HCl, with the degradation rate up to 89.19%, and the degradation efficiency was still 74.8% after four cycles. (4) UV-vis and XPS analysis determined that the visible light response of the composite extended to 548 nm and could absorb more visible light. (5) The system radical trapping test demonstrated that ·O2- and h+ played a major role in the photocatalytic degradation of TC-HCl, and the role of h+ was greater than that of ·O2-. The above results show that Ag/Ag2O/g-C3N4/BiVO4 is an efficient and stable composite photocatalyst with potential application in the treatment of TC-HCl antibiotic wastewater. 
Keywords:
点击此处可从《环境科学研究》浏览原始摘要信息
点击此处可从《环境科学研究》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号