首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Combined effect of adsorption and biodegradation of biological activated carbon on H2S biotrickling filtration
Authors:Duan Huiqi  Yan Rong  Koe Lawrence Choon Chiaw  Wang Xiaoling
Institution:School of Civil and Environmental Engineering, Nanyang Technological University, Blk N1-B3b-18, 50 Nanyang Avenue, Singapore 639798, Singapore.
Abstract:In order to evaluate the combined effect of adsorption and biodegradation of H(2)S on activated carbon surface in biotrickling filtration, four laboratory-scale biofiltration columns were operated simultaneously for 120h to investigate the mechanisms involved in treating synthetic H(2)S streams using biological activated carbon (BAC). The first three columns (A, B, C) contained a mixture of activated carbon and glass beads, with the carbons (BAC or virgin activated carbon (VAC)) and conditions (with or without liquid medium recirculation) differentiated. The last column (D) used 100% glass beads with liquid medium recirculation. Air streams containing 45ppmv H(2)S were passed through the columns at 4s of gas retention time (GRT) and liquid flow rate was set at 0.71mlmin(-1). Column D got its breakthrough in 3min of operation, indicating a negligible contribution of glass beads to the adsorption of H(2)S. The removal efficiency (RE) of Columns B and C using VAC dropped quickly to 30% within the first 8h, and afterwards continued to drop further but slowly. Column A using BAC stayed at 25% of RE throughout the operation time. A thorough investigation of the H(2)S oxidation products, i.e., various S species in both aqueous (recirculation media) and solid phases (BAC and VAC), was conducted using ICP-OES, IC, XRF, and CHNS elemental analyzer. BAC demonstrated a better performance than columns with adsorption only. Water film was found to enhance H(2)S removal. The percentage of sulphate in the total sulphur of the BAC system improved to twice of that of VAC system, indicating sulphate is the main product of H(2)S biofiltration. The observed pH drop in BAC system double confirmed that the presence of biodegradation in the biofilm over carbon surface did profound effect on the oxidation of H(2)S, compare to the systems with adsorption only.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号