首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Greenhouse gas emissions from two hydroelectric reservoirs in Mediterranean region
Authors:Georgios Samiotis  Giorgos Pekridis  Nikolaos Kaklidis  Eleni Trikoilidou  Nikolaos Taousanidis  Elisavet Amanatidou
Institution:1.Environmental Engineering and Pollution Control Department,Western Macedonia University of Applied Sciences,Kozani,Greece;2.Department of Mechanical Engineering,University of Western Macedonia,Kozani,Greece;3.Mechanical Engineering Department,Western Macedonia University of Applied Sciences,Kozani,Greece
Abstract:Water reservoirs are used for many purposes, such as water supply, irrigation, flood mitigation, and hydroelectric energy generation. Although hydroelectric energy is considered “green,” many studies show that the construction of a reservoir enhances greenhouse gas (GHG) emissions at the transformed area. These emissions, mainly of CO2, CH4, and N2O gases, depend on the age of the reservoir, landscape and soil composition, fauna and flora remnants of the impounded area, climatic conditions, and basin runoffs. Consequently, GHG emissions significantly vary between reservoirs and depending on local specificities. Several studies have investigated GHG emissions from reservoirs around the world, focusing mainly on reservoirs located in cold regions, temperate regions, and tropical regions. Research is lacking for reservoirs in Mediterranean countries, like Greece, and similar regions. This work initially assesses the net GHG emissions of a newly created reservoir (Ilarion est. 2012) in Western Macedonia, Greece. The methodology for net GHG emission calculation was based on the use of literature data concerning pre-impoundment emission factors and local specificities of the reservoir (terrain type, canopy cover), as well as on the 2-year measurement data that were collected using a “static floating chamber.” Furthermore, in this work, the gross GHG emissions of an older, in-line reservoir (Polyfytos est. 1974) were also calculated, based on 2-year measurement data. The results show that the global warming potential (GWP) of the reservoirs is dictated by methane emissions; it minimizes during winter and spring and maximizes during summer and autumn. Hydroelectric energy production at Ilarion Reservoir results in 32 to 97 times less total CO2 equivalent emissions in comparison to fossil fuels, while at Polyfytos Reservoir only 8 to 24 times less (based on gross emissions). It appears that the impact of a reservoir’s morphology on GHG emissions is more significant than that of a reservoir’s age.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号