首页 | 本学科首页   官方微博 | 高级检索  
     检索      


A blind test of the MOIRA lake model for radiocesium for Lake Uruskul, Russia, contaminated by fallout from the Kyshtym accident in 1957
Authors:Håkanson L  Sazykina T
Institution:Institute of Earth Sciences, Uppsala University, Villav. 6, 752 36 Uppsala, Sweden. lars.hakanson@natgeog.uu.se
Abstract:This paper presents results of a model-test carried out within the framework of the COMETES project (EU). The tested model is a new lake model for radiocesium to be used within the MOIRA decision support system (DSS; MOIRA and COMETES are acronyms for EU-projects). This model has previously been validated against independent data from many lakes covering a wide domain of lake characteristics and been demonstrated to yield excellent predictive power (see H?kanson, Modelling Radiocesium in Lakes and Coastal Areas. Kluwer, Dordrecht, 2000, 215 pp). However, the model has not been tested before for cases other than those related to the Chernobyl fallout in 1986, nor for lakes from this part of the world (Southern Urals) and nor for situations with such heavy fallout as this. The aims of this work were: (1) to carry out a blind test of the model for the case of continental Lake Uruskul, heavily contaminated with 90Sr and 137Cs as a result of the Kyshtym radiation accident (29 September 1957) in the Southern Urals, Russia, and (2) if these tests gave satisfactory results to reconstruct the radiocesium dynamics for fish, water and sediments in the lake. Can the model provide meaningful predictions in a situation such as this? The answer is yes, although there are reservations due to the scarcity of reliable empirical data. From the modelling calculations, it may be noted that the maximum levels of 137Cs in fish (here 400 g ww goldfish), water and sediments were about 100,000 Bq/kg ww, 600 Bq/l and 30,000 Bq/kg dw, respectively. The values in fish are comparable to or higher than the levels in fish in the cooling pond of the Chernobyl NPP. The model also predicts an interesting seasonal pattern in 137Cs levels in sediments. There is also a characteristic "three phase" development for the 137Cs levels in fish: first an initial stage when the 137Cs concentrations in fish approach a maximum value, then a phase with relatively short ecological half-lives followed by a final phase with long ecological half-lives more or less corresponding to the physical decay of radiocesium.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号