首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Validation of polymer-based nano-iron oxide in further phosphorus removal from bioeffluent: laboratory and scaledup study
Authors:Ming Hua  Lili Xiao  Bingcai Pan  Quanxing Zhang
Institution:State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Xianlin Campus, Nanjing University, Nanjing 210023, China
Abstract:The efficient removal of phosphorous from water is an important but challenging task. In this study, we validated the applicability of a new commercially available nanocomposite adsorbent, i.e., a polymer-based hydrated ferric oxide nanocomposite (HFO-201), for the further removal of phosphorous from the bioeffluent discharged from a municipal wastewater treatment plant, and the operating parameters such as the flow rate, temperature and composition of the regenerants were optimized. Laboratory-scale results indicate that phosphorous in real bioeffluent can be effectively removed from 0.92 mg·L-1 to<0.5 mg·L-1 (or even<0.1 mg·L-1 as desired) by the new adsorbent at a flow rate of 50 bed volume (BV) per hour and treatable volume of 3500–4000 BV per run. Phosphorous removal is independent of the ambient temperature in the range of 15°C–40°C. Moreover, the exhausted HFO-201 can be regenerated by a 2% NaOH+ 5% NaCl binary solution for repeated use without significant capacity loss. A scaled-up study further indicated that even though the initial total phosphorus (TP) was as high as 2 mg·L-1, it could be reduced to<0.5 mg·L-1, with a working capacity of 4.4–4.8 g·L-1 HFO-201. In general, HFO-201 adsorption is a choice method for the efficient removal of phosphate from biotreated waste effluent.
Keywords:bioeffluent  phosphorus removal  nanocomposite adsorbent  hydrated ferric oxide  
本文献已被 SpringerLink 等数据库收录!
点击此处可从《Frontiers of Environmental Science & Engineering》浏览原始摘要信息
点击此处可从《Frontiers of Environmental Science & Engineering》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号