首页 | 本学科首页   官方微博 | 高级检索  
     


Application of FT-IR for assessment of the biological stability of landfilled municipal solid waste (MSW) during in situ aeration
Authors:Tesar M  Prantl R  Lechner P
Affiliation:Department of Water, Atmosphere and Environment, Institute of Waste Management, University of Natural Resources and Applied Life Sciences Vienna, Muthgasse 107, Vienna, Austria. maria.tesar@boku.ac.at
Abstract:Disposal of untreated municipal solid waste leads to gaseous emissions as well as liquid degradation products. In situ aeration is an emerging means for remediation of abandoned landfills. It aims at an accelerated mineralization and stabilization of waste organic matter and thus reduces significantly the emission potential of the site. In order to prove the success of the technique, evaluation of the biological stability of the aerated material has been suggested. Fourier Transform Infrared Spectroscopy (FT-IR) provides comprehensive information on the chemical composition of solid waste samples. Different stages of organic matter degradation are reflected by changes in the infrared spectral pattern. In the present study the feasibility of applying FT-IR for assessment of the stability of waste material derived from abandoned landfills and for in situ aeration process control was investigated. Waste samples derived in the course of pilot-scale and lab-scale aeration experiments were characterized by FT-IR (4000-400 cm(-1), KBr-technique, transmission mode) and a set of conventional parameters describing biological stability. The occurrence of distinct indicator bands was correlated with chemical and biological waste properties using 206 solid waste samples. Visual spectra interpretation was found to be appropriate in proving a reduced emission potential of initially rather reactive waste (respiration activity over 4 days (RA(4)) > 7 mg O(2) g(-1) DM) during aeration. Furthermore, cluster analysis was applied successfully to differentiate between original and aerated waste samples, even for rather stable material (RA(4) < 7 mg O(2) g(-1) DM), when visual spectra interpretation was limited.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号