首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Cellulose-based anion exchanger with tertiary amine functionality for the extraction of arsenic(V) from aqueous media
Authors:TS Anirudhan  S Jalajamony
Institution:Department of Chemistry, University of Kerala, Kariavattom, Trivandrum 695 581, India
Abstract:A novel cellulose-based anion exchanger (Cell-AE) with tertiary amine functionality was synthesized by graft polymerization reaction of cellulose and glycidyl methacrylate using N,N′-methylene-bis-acrylamide as a crosslinker and benzoyl peroxide as an initiator, followed by dimethylamine (amination) and acid (HCl) treatment. The chemical modification was confirmed by infrared spectroscopy and CHN analysis. The anion exchanger was used in batch processes to study AS(V) adsorption in solutions. The operating variables studied were pH, contact time, initial As(V) concentration, sorbent mass, and ionic strength. The process was affected by solution pH with an optimum adsorption occurring at pH 6.0. Adsorption equilibrium was achieved within 1 h. Increasing ionic strength of solution negatively affected the arsenic uptake. The adsorption process performed more than 99.0% of As(V) removal from an initial concentration of 25.0 mg/L. The process of adsorption followed pseudo-second-order kinetics. The adsorption equilibrium isotherm data were analyzed using the Langmuir, Freundlich, Redlich–Peterson and Langmuir–Freundlich equations. The Langmuir–Freundlich isotherm described the adsorption data over the concentration range 25–400 mg/L. The adsorption mechanism appears to be a ligand-exchange process. A simulated groundwater sample was treated with Cell-AE to demonstrate its efficiency in removing As(V). The adsorbed As(V) ions were desorbed effectively by a 0.1 M NaOH solution.
Keywords:
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号