首页 | 本学科首页   官方微博 | 高级检索  
     


Economic assessment of flash co-pyrolysis of short rotation coppice and biopolymer waste streams
Authors:T. Kuppens  T. Cornelissen  R. Carleer  J. Yperman  S. Schreurs  M. Jans  T. Thewys
Affiliation:1. Research Group Environmental Economics and Law, Centre for Environmental Sciences, Hasselt University, 3590 Diepenbeek, Belgium;2. Laboratory of Applied and Analytical Chemistry, Centre for Environmental Sciences, Hasselt University, Agoralaan Gebouw D, 3590 Diepenbeek, Belgium;3. NuTeC, Department TIW, XIOS, Agoralaan Gebouw H, 3590 Diepenbeek, Belgium
Abstract:The disposal problem associated with phytoextraction of farmland polluted with heavy metals by means of willow requires a biomass conversion technique which meets both ecological and economical needs. Combustion and gasification of willow require special and costly flue gas treatment to avoid re-emission of the metals in the atmosphere, whereas flash pyrolysis mainly results in the production of (almost) metal free bio-oil with a relatively high water content. Flash co-pyrolysis of biomass and waste of biopolymers synergistically improves the characteristics of the pyrolysis process: e.g. reduction of the water content of the bio-oil, more bio-oil and less char production and an increase of the HHV of the oil. This research paper investigates the economic consequences of the synergistic effects of flash co-pyrolysis of 1:1 w/w ratio blends of willow and different biopolymer waste streams via cost-benefit analysis and Monte Carlo simulations taking into account uncertainties. In all cases economic opportunities of flash co-pyrolysis of biomass with biopolymer waste are improved compared to flash pyrolysis of pure willow. Of all the biopolymers under investigation, polyhydroxybutyrate (PHB) is the most promising, followed by Eastar, Biopearls, potato starch, polylactic acid (PLA), corn starch and Solanyl in order of decreasing profits. Taking into account uncertainties, flash co-pyrolysis is expected to be cheaper than composting biopolymer waste streams, except for corn starch. If uncertainty increases, composting also becomes more interesting than flash co-pyrolysis for waste of Solanyl. If the investment expenditure is 15% higher in practice than estimated, the preference for flash co-pyrolysis compared to composting biopolymer waste becomes less clear. Only when the system of green current certificates is dismissed, composting clearly is a much cheaper processing technique for disposing of biopolymer waste.
Keywords:
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号