首页 | 本学科首页   官方微博 | 高级检索  
     检索      

钯掺TiO2光催化降解全氟辛酸
引用本文:刘晴,喻泽斌,张睿涵,李明洁,陈颖,王莉,匡瑜,张搏,朱有慧.钯掺TiO2光催化降解全氟辛酸[J].环境科学,2015,36(6):2138-2146.
作者姓名:刘晴  喻泽斌  张睿涵  李明洁  陈颖  王莉  匡瑜  张搏  朱有慧
作者单位:广西大学环境学院, 南宁 530004;广西大学环境学院, 南宁 530004;广西华蓝设计(集团)有限公司, 南宁 530011;广西大学环境学院, 南宁 530004;广西大学环境学院, 南宁 530004;广西大学环境学院, 南宁 530004;广西大学环境学院, 南宁 530004;广西大学环境学院, 南宁 530004;广西大学环境学院, 南宁 530004;广西大学环境学院, 南宁 530004
基金项目:国家自然科学基金项目(21367002)
摘    要:全氟辛酸(perfluorooctanoic acid,PFOA)以其分布广泛性、生物蓄积性、生物毒性强而成为全球关注的一种新型持久性有机污染物.采用化学还原法制备钯掺二氧化钛(Pd-Ti O2)催化剂,利用XRD、FESEM、UV-vis DRS对催化剂进行表征,并考察其在365 nm紫外光照射下对PFOA的光催化降解效果.结果表明,化学还原的制备方法使Ti O2粒径减小、比表面积增大且对紫外光的吸收性能增大,但并不引起PFOA光催化效果的改变.而Pd掺杂后大大增强了PFOA的降解效果,反应7 h后溶液中氟离子浓度为6.62 mg·L-1,是Ti O2(P25)的7.3倍.投加俘获剂与通入氮气的实验证明,在PFOA的降解过程中·OH起重要作用,氧气的存在可促进PFOA的降解.采用UPLC-QTOF-MS对产物进行鉴定分析,PFOA的可能降解过程是经h+氧化后发生脱羧基反应,产生的全氟烷烃自由基(·CnF2n+1)被·OH氧化,脱氟生成短链全氟羧酸.Pd能作为电子(e-)捕获剂、加速e-向O2等电子受体的转移,从而缓解e-累积,提高对PFOA的降解效果.

关 键 词:全氟辛酸  (PFOA)  TiO2  光催化  钯掺杂  反应机制
收稿时间:2014/10/6 0:00:00
修稿时间:2015/1/19 0:00:00

Photocatalytic Degradation of Perfluorooctanoic Acid by Pd-TiO2 Photocatalyst
LIU Qing,YU Ze-bin,ZHANG Rui-han,LI Ming-jie,CHEN Ying,WANG Li,KUANG Yu,ZHANG Bo and ZHU You-hui.Photocatalytic Degradation of Perfluorooctanoic Acid by Pd-TiO2 Photocatalyst[J].Chinese Journal of Environmental Science,2015,36(6):2138-2146.
Authors:LIU Qing  YU Ze-bin  ZHANG Rui-han  LI Ming-jie  CHEN Ying  WANG Li  KUANG Yu  ZHANG Bo and ZHU You-hui
Institution:School of the Environment, Guangxi University, Nanning 530004, China;School of the Environment, Guangxi University, Nanning 530004, China;Guangxi Hualan Design and Consulting Group Co., Ltd., Nanning 530011, China;School of the Environment, Guangxi University, Nanning 530004, China;School of the Environment, Guangxi University, Nanning 530004, China;School of the Environment, Guangxi University, Nanning 530004, China;School of the Environment, Guangxi University, Nanning 530004, China;School of the Environment, Guangxi University, Nanning 530004, China;School of the Environment, Guangxi University, Nanning 530004, China;School of the Environment, Guangxi University, Nanning 530004, China
Abstract:Perfluorooctanoic acid (PFOA) is a new persistent organic pollutant which has got global concern for its wide distribution, high bioaccumulation and strong biological toxicity. In present study, the photocatalytic degradation of PFOA using palladium doped TiO2(Pd-TiO2) prepared by chemical reduction method was investigated. The photocatalysts were characterized by XRD, FESEM and UV-vis DRS and were used for PFOA degradation under 365 nm UV irradiation. The results indicated that the grain size of TiO2 was smaller while the specific surface area increased and the absorption of ultraviolet light also enhanced after using chemical reduction method, but all these changes had no influence on PFOA degradation. However, the degradation was significantly enhanced because of the deposition of Pd, the fluoride concentration of PFOA was 6.62 mg·L-1 after 7 h irradiation which was 7.3 times higher than that of TiO2(P25). Experiments with the addition of trapping agent and nitrogen indicated that ·OH played an important role in PFOA degradation while the presence of O2 accelerated the degradation. The main intermediate products of photocatalytic degradation of PFOA were authenticated by an ultra-performance liquid chromatography coupled with quadrupole time-of-flight mass spectrometry systems (UPLC-QTOF-MS). The probable photocatalytic degradation mechanism involves h+ attacking the carboxyl of PFOA and resulting in decarboxylation. The produced ·CnF2n+1 was oxidized by ·OH underwent defluorinetion to form shorter-chain perfluorinated carboxylic acids. The significant enhancement of PFOA degradation can be ascribed to the palladium deposits, acting as electron traps on the Pd-TiO2 surface, which facilitated the transfer of photogenerated electrons and retarded the accumulation of electrons.
Keywords:PFOA  TiO2  photocatalytic  palladium doping  reaction mechanism
本文献已被 CNKI 等数据库收录!
点击此处可从《环境科学》浏览原始摘要信息
点击此处可从《环境科学》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号