首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Symmetrizing cathode-anode response to speed up charging of nanoporous supercapacitors
Authors:Tangming Mo  Liang Zeng  Zhenxiang Wang  Svyatoslav Kondrat  Guang Feng
Abstract:Asymmetric behaviors of capacitance and charging dynamics in the cathode and anode are general for nanoporous supercapacitors. Un-derstanding this behavior is essential for the optimal design of supercapacitors. Herein, we perform constant-potential molecular dynamics simulations to reveal asymmetric features of porous supercapacitors and their effects on capacitance and charging dynamics. Our simulations show that, counterintuitively, charging dynamics can be fast in pores providing slow ion diffusion and vice versa. Unlike electrodes with single-size pores, multi-pore electrodes show overcharging and accelerated co-ion desorption, which can be attributed to the subtle interplay between the dynamics and charging mechanisms. We find that capacitance and charging dynamics correlate with how the ions respond to an applied cell voltage in the cathode and anode. We demonstrate that symmetrizing this response can help boost power density, which may find practical applications in supercapacitor optimization.
Keywords:Nanoporous carbon  Charging dynamics  Charge storage mechanism  Overfilling  Overcharging
本文献已被 万方数据 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号