首页 | 本学科首页   官方微博 | 高级检索  
     

吸收液对中空纤维膜接触器回收尿液中氨氮的影响
引用本文:张俊慧,杨丹丹,谢梦飞,封莉,张立秋,余昊翔,曲丹. 吸收液对中空纤维膜接触器回收尿液中氨氮的影响[J]. 环境科学学报, 2021, 41(8): 3243-3250
作者姓名:张俊慧  杨丹丹  谢梦飞  封莉  张立秋  余昊翔  曲丹
作者单位:北京市水体污染源控制技术重点实验室,北京100083;北京林业大学环境科学与工程学院,北京100083;北京华科仪科技股份有限公司,北京100076
基金项目:国家自然科学基金(No.51878049);国家水体污染控制与治理科技重大专项(No.2017ZX07102-002)
摘    要:采用中空纤维膜接触器(Hollow Fiber Membrane Contactor,HFMC)回收尿液中的氨氮,系统研究了吸收液类型(H3PO4、H2SO4和HNO3)对氨回收效能、水蒸气的跨膜通量和所获液体肥料的影响.结果 表明,使用H2SO4作为吸收液时氨氮回收效能最优,其次是H3PO4和HNO3.当采用H2SO...

关 键 词:中空纤维膜接触器  氨氮回收  吸收液  尿液
收稿时间:2020-11-24
修稿时间:2021-02-10

Effect of stripping solution on the recovery of ammonium nitrogen from human urine by hollow fiber membrane contactor
ZHANG Junhui,YANG Dandan,XIE Mengfei,FENG Li,ZHANG Liqiu,YU Haoxiang,QU Dan. Effect of stripping solution on the recovery of ammonium nitrogen from human urine by hollow fiber membrane contactor[J]. Acta Scientiae Circumstantiae, 2021, 41(8): 3243-3250
Authors:ZHANG Junhui  YANG Dandan  XIE Mengfei  FENG Li  ZHANG Liqiu  YU Haoxiang  QU Dan
Affiliation:1. Beijing Key Laboratory for Source Control Technology of Water Pollution, Beijing Forestry University, Beijing 100083;2. College of Environmental Science and Engineering, Beijing Forestry University, Beijing 100083;HKY Technology Co., LTD., Beijing 100076
Abstract:A hollow fiber membrane contactor (HFMC) was used to recover ammonium nitrogen from human urine. The effect of stripping solution on the ammonia recovery efficiency, water vapor transmembrane flux and the obtained liquid fertilizer quality were investigated. The results showed that the best performance of ammonia capture was obtained when using H2SO4 as the stripping solution, followed by H3PO4 and HNO3. The ammonia recovery efficiency, transmembrane flux and mass transfer coefficient were 84.49%±0.01%, 22.92 g·m-2·h-1 and 2.37×10-6 m·s-1, respectively, when using H2SO4 as the stripping solution. The reverse mass transfer from the stripping solution side to the feed solution side was observed due to the volatility of HNO3 with reduced transmembrane driving force of ammonia transfer. In addition, NH4NO3 aerosol could be generated by HNO3 and NH3 reactions in the membrane pores, increasing the mass transfer resistance and decreasing the ammonium nitrogen capture efficiency. The water activity difference and water vapor transmembrane flux were calculated for different acids as stripping solutions. The results showed that the water activity difference and transmembrane flux gradually increased as ammonia was continuously captured by the stripping solutions with the water fluxes of H3PO4, H2SO4 and HNO3 of 7.44×10-2 kg·m-2·h-1, 9.06×10-2 kg·m-2·h-1 and 2.00×10-2 kg·m-2·h-1, respectively at the end of experiments. Liquid single N fertilizer was directly obtained using HNO3 or H2SO4 as stripping solutions, while liquid N-P fertilizer was obtained using H3PO4 as the stripping solution with the proportions of (NH4)2HPO4 and NH4H2PO4 were 88.33% and 11.67%, respectively.
Keywords:hollow fiber membrane contactor  ammonium nitrogen recovery  stripping solution  human urine
本文献已被 万方数据 等数据库收录!
点击此处可从《环境科学学报》浏览原始摘要信息
点击此处可从《环境科学学报》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号