首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Does community resilience decrease social–ecological vulnerability? Adaptation pathways trade-off in the Bolivian Altiplano
Authors:Lorenzo Chelleri  Guido Minucci  Eirini Skrimizea
Institution:1.Gran Sasso Science Institute,GSSI Social Sciences,L’Aquila,Italy;2.Architecture and Urban Studies Department,Politecnico di Milano,Milan,Italy
Abstract:Worsening climate change impacts and environmental degradation are increasingly supporting policies and plans in framing a linear understanding of resilience building and vulnerability reduction. However, adaptations to different but interacting drivers of change are unclear in the mix of opportunities and threats related to increasing connections, emerging technologies, new patterns of dependency and possible lock-in effects. This paper discusses a more open-ended understanding of the relationship between resilience and vulnerability, highlighting emerging trade-offs among adaptive capacities and exposures to different (and new) threats as they relate to social–ecological sustainability. The transition of the Southern Bolivian Altiplano, from being a remote rural area of subsistence farming to a global leader in quinoa production and exportation, has been taken as a study case. Results from 18 workshops organised within different communities provide insights about a range of trade-offs between community resilience attributes and social–ecological vulnerability induced from land use changes, livestock strategies, communities’ behavioural change and institutions’ emerging policies. The main theoretical advances of the paper relate to the need for critically framing multiple threat exposures and adaptive capacity trade-offs, contributing to arguing the usually positive meaning of resilience, and taking into account “to whom or to what is positive which adaptation” and “which trade-off should be accepted, and why”. Framing adaptive pathways through these questions would serve as a tool for addressing sustainable development goals, while avoiding lock-ins or unsustainable path dependencies.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号