首页 | 本学科首页   官方微博 | 高级检索  
     检索      


A new method of simultaneous determination of atmospheric amines in gaseous and particulate phases by gas chromatography-mass spectrometry
Authors:Yifei Chen  Qinhao Lin  Guiying Li  Taicheng An
Institution:1. Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Institute of Environmental Health and Pollution control, Guangdong University of Technology, Guangzhou 510006, China;2. Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, Key Laboratory of City Cluster Environmental Safety and Green Development (Department of Education), School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China;3. Chemistry and Chemical Engineering Guangdong Laboratory, Shantou 515031, China
Abstract:As more attention is being paid to the characteristics of atmospheric amines, there is also an increasing demand for reliable detection technologies. Herein, a method was developed for simultaneous detection of atmospheric amines in both gaseous and particulate phases using gas chromatography-mass spectrometry (GC-MS). The amine samples were collected with and without phosphoric acid filters, followed by derivatization with benzenesulfonyl chloride under alkaline condition prior to GC-MS analysis. Furthermore, the method was optimized and validated for determining 14 standard amines. The detection limits ranged from 0.0408-0.421 µg/mL (for gaseous samples) and 0.163-1.69 µg/mL (for particulate samples), respectively. The obtained recoveries ranged from 68.8%-180% and the relative standard deviation was less than 30%, indicating high precision and good reliability of the method. Seven amines were simultaneously detected in gaseous and particulate samples in an industrial park using the developed method successfully. Methylamine, dimethylamine and diethylamine together accounted for 76.7% and 75.6% of particulate and gaseous samples, respectively. By comparing the measured and predicted values of gas-particle partition fractions, it was found that absorption process of aqueous phase played a more important role in the gas-partition of amines than physical adsorption. Moreover, the reaction between unprotonated amines and acid (aq.) in water phase likely promoted water absorption. Higher measured partition fraction of dibutylamine was likely due to the reaction with gaseous HCl. The developed method would help provide a deeper understanding of gas-particle partitioning as well as atmospheric evolution of amines.
Keywords:Corresponding author    Atmospheric amines  Determination method  Simultaneous determination  Gaseous and particulate phases  Gas chromatography-mass spectrometry
点击此处可从《环境科学学报(英文版)》浏览原始摘要信息
点击此处可从《环境科学学报(英文版)》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号