首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Mechanisms of allicin exposure for the sludge fermentation enhancement: Focusing on the fermentation processes and microbial metabolic traits
Authors:Feng Wang  Jingyang Luo  Shiyu Fang  Wenxuan Huang  Yunqi Zhang  Le Zhang  Xiaoshi Cheng  Wei Du  Fang Fang  Jiashun Cao  Yang Wu
Institution:1. Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, Hohai University, Nanjing 210098, China;2. College of Environment, Hohai University, Nanjing 210098, China;3. State Key Laboratory of Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
Abstract:As a frequently used product with antimicrobial activity, consumed allicin might be discharged and concentrated in waste-activated sludge (WAS). However, the influence of allicin (as an exogenous pollutant) on WAS fermentation has not been clearly revealed. This study aimed to disclose the impacts of allicin on volatile fatty acid (VFA) generation during WAS fermentation. The results showed that the appropriate presence of allicin (10 mg/g TSS) significantly enhanced the VFA yield (1894 versus 575 mg COD/L in the control) with increased acetate proportion (24.3%). Further exploration found that allicin promoted WAS solubilization, hydrolysis and acidification simultaneously. Metagenomic analysis revealed that the key genes involved in extracellular hydrolysis metabolism (i.e., CAZymes), membrane transport (i.e., gtsA and ytfT), substrate metabolism (i.e., yhdR and pfkC) and fatty acid synthesis (i.e., accA and accD) were all highly expressed. Allicin also induced the bacteria to produce more signalling molecules and regulate cellular functions, thereby enhancing the microbial adaptive and regulatory capacity to the unfavourable environment. Moreover, the variations in fermentative microbes and their contributions to the upregulation of functional genes (i.e., ytfR, gltL, INV, iolD and pflD) for VFA generation were disclosed. Overall, the simultaneous stimulation of functional microbial abundances and metabolic activities contributed to VFA production in allicin-conditioned reactors.
Keywords:Corresponding authors    Allicin  Waste activated sludge (WAS)  Anaerobic fermentation  Metagenomic analysis  Functional genes
点击此处可从《环境科学学报(英文版)》浏览原始摘要信息
点击此处可从《环境科学学报(英文版)》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号