A remediation performance model for enhanced metabolic reductive dechlorination of chloroethenes in fractured clay till |
| |
Authors: | Manoli Gabriele Chambon Julie C Bjerg Poul L Scheutz Charlotte Binning Philip J Broholm Mette M |
| |
Affiliation: | Department of Environmental Engineering, Technical University of Denmark (DTU), Lyngby, Denmark. manoli@dmsa.unipd.it |
| |
Abstract: | A numerical model of metabolic reductive dechlorination is used to describe the performance of enhanced bioremediation in fractured clay till. The model is developed to simulate field observations of a full scale bioremediation scheme in a fractured clay till and thereby to assess remediation efficiency and timeframe. A relatively simple approach is used to link the fermentation of the electron donor soybean oil to the sequential dechlorination of trichloroethene (TCE) while considering redox conditions and the heterogeneous clay till system (clay till matrix, fractures and sand stringers). The model is tested on lab batch experiments and applied to describe sediment core samples from a TCE-contaminated site. Model simulations compare favorably to field observations and demonstrate that dechlorination may be limited to narrow bioactive zones in the clay matrix around fractures and sand stringers. Field scale simulations show that the injected donor is expected to be depleted after 5 years, and that without donor re-injection contaminant rebound will occur in the high permeability zones and the mass removal will stall at 18%. Long remediation timeframes, if dechlorination is limited to narrow bioactive zones, and the need for additional donor injections to maintain dechlorination activity may limit the efficiency of ERD in low-permeability media. Future work should address the dynamics of the bioactive zones, which is essential to understand for predictions of long term mass removal. |
| |
Keywords: | |
本文献已被 PubMed 等数据库收录! |
|