首页 | 本学科首页   官方微博 | 高级检索  
     

生物炭对土壤酶活和细菌群落的影响及其作用机制
引用本文:冯慧琳,徐辰生,何欢辉,曾强,陈楠,李小龙,任天宝,姬小明,刘国顺. 生物炭对土壤酶活和细菌群落的影响及其作用机制[J]. 环境科学, 2021, 42(1): 422-432
作者姓名:冯慧琳  徐辰生  何欢辉  曾强  陈楠  李小龙  任天宝  姬小明  刘国顺
作者单位:河南农业大学烟草学院,河南省生物炭工程技术研究中心,郑州 450002;福建省烟草公司南平市公司,南平 353000
基金项目:国家重点研发计划项目(2017YFD020 0808);福建省烟草公司南平市公司科技项目(NYK2017-03-03)
摘    要:生物炭因其独特的理化性质能够提高土壤碳氮矿化速率及改善土壤微生态环境,因此探索生物炭调控土壤微生态环境与土壤酶活及其作用机制对改善土壤质量具有重要意义.采用大田试验方式研究不同生物炭施用水平0(CK2)、0.6(T1)、0.9(T2)、1.2(T3)和1.5(T4)t·hm-2以及完全空白对照(CK1:不施任何肥料和生...

关 键 词:细菌群落  生物炭  土壤酶活  土壤微生态  作用机制
收稿时间:2020-05-27
修稿时间:2020-07-21

Effect of Biochar on Soil Enzyme Activity & the Bacterial Community and Its Mechanism
FENG Hui-lin,XU Chen-sheng,HE Huan-hui,ZENG Qiang,CHEN Nan,LI Xiao-long,REN Tian-bao,JI Xiao-ming,LIU Guo-shun. Effect of Biochar on Soil Enzyme Activity & the Bacterial Community and Its Mechanism[J]. Chinese Journal of Environmental Science, 2021, 42(1): 422-432
Authors:FENG Hui-lin  XU Chen-sheng  HE Huan-hui  ZENG Qiang  CHEN Nan  LI Xiao-long  REN Tian-bao  JI Xiao-ming  LIU Guo-shun
Affiliation:Henan Biochar Engineering Research Center, College of Tobacco Sciences, Henan Agricultural University, Zhengzhou 450002, China;Nanping Tobacco Company of Fujian Province, Nanping 353000, China
Abstract:Biochar-based fertilizers can improve the mineralization of carbon and nitrogen in soil and enhance the soil micro-ecological environment due to particular physical and chemical properties. It is of great significance to explore the underlying mechanism of biochar-based fertilizer in the regulation of soil microorganisms and soil enzyme activity to improve soil quality. Field experiments were conducted to investigate the effects of different biochar-based fertilizer rates[0 (CK2), 0.6 (T1), 0.9 (T2), 1.2 (T3), and 1.5 (T4) t·hm-2]on soil nutrients, soil enzyme activity, and bacterial community structure. The results showed that with the application of biochar-based fertilizer, soil bulk density decreased, while the pH value, available P, available K, organic matter content, and the C/N ratio increased by 0.32%-5.83%, 14.09%-23.16%, 0%-38.70%, 7.49%-14.16%, and 4.06%-10.13%, respectively, compared to that of the CK2 treatment. With increasing rates of biochar-based fertilizer, the enzyme activity first increased and then decreased. Invertase (INV), urease (URE), catalase (CAT), and neutral phosphatase (NPH) activity under the application of biochar-based fertilizer were 63.73%-166.37%, 117.52%-174.03%, 12.98%-23.59%, and 60.84%-119.71% higher than that of CK2, respectively. The corresponding bacterial diversity was significantly improved, especially with regard to the increase in the abundance of growth promoting bacteria, such as Gemmatimonadetes and Proteobacteria, and decreased the abundance of Acidobacteria and Actinobacteria. The correlation analysis showed that soil C/N ratio was the key factor affecting soil enzyme activity, and there was a significant positive correlation between soil enzyme activity and bacterial diversity. There were significantly positive correlations among the activities of the above four soil enzymes and the relative abundance of Gemmatimonadetes (P<0.01), with CAT being the key factor affecting the bacterial community structure. This study revealed a relationship between soil enzyme activity and microbial colonies, which provides a theoretical basis and mechanism for applying biochar to regulate the soil enzyme and micro-ecological environment.
Keywords:bacterial community  biochar  soil enzyme activity  soil microorganisms  action mechanism
本文献已被 万方数据 等数据库收录!
点击此处可从《环境科学》浏览原始摘要信息
点击此处可从《环境科学》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号