Topographic, bioclimatic, and vegetation characteristics of three ecoregion classification systems in North America: comparisons along continent-wide transects |
| |
Authors: | Thompson Robert S Shafer Sarah L Anderson Katherine H Strickland Laura E Pelltier Richard T Bartlein Patrick J Kerwin Michael W |
| |
Affiliation: | U.S. Geological Survey, Earth Surface Processes Team, Box 25046, MS 980, DFC Denver, Colorado 80225, USA. rthompson@usgs.gov |
| |
Abstract: | Ecoregion classification systems are increasingly used for policy and management decisions, particularly among conservation and natural resource managers. A number of ecoregion classification systems are currently available, with each system defining ecoregions using different classification methods and different types of data. As a result, each classification system describes a unique set of ecoregions. To help potential users choose the most appropriate ecoregion system for their particular application, we used three latitudinal transects across North America to compare the boundaries and environmental characteristics of three ecoregion classification systems [Küchler, World Wildlife Fund (WWF), and Bailey]. A variety of variables were used to evaluate the three systems, including woody plant species richness, normalized difference in vegetation index (NDVI), and bioclimatic variables (e.g., mean temperature of the coldest month) along each transect. Our results are dominated by geographic patterns in temperature, which are generally aligned north-south, and in moisture, which are generally aligned east-west. In the west, the dramatic changes in physiography, climate, and vegetation impose stronger controls on ecoregion boundaries than in the east. The Küchler system has the greatest number of ecoregions on all three transects, but does not necessarily have the highest degree of internal consistency within its ecoregions with regard to the bioclimatic and species richness data. In general, the WWF system appears to track climatic and floristic variables the best of the three systems, but not in all regions on all transects. |
| |
Keywords: | |
本文献已被 PubMed 等数据库收录! |
|