首页 | 本学科首页   官方微博 | 高级检索  
     检索      


A Geochemical Multi-Methodological Approach in Hazard Assessment of CO2-Rich Gas Emissions at Mt. Amiata Volcano (Tuscany, Central Italy)
Authors:F Tassi  O Vaselli  F Cuccoli  A Buccianti  B Nisi  E Lognoli  G Montegrossi
Institution:1. Department of Earth Sciences, University of Florence, Via G. La Pira 4, 50121, Florence, Italy
2. Department of Electronics and Telecommunications, U.O. CNIT, Via di Santa Marta 3, 50139, Florence, Italy
3. CNR—IGG Institute of Geosciences and Earth Resources, Via G. La Pira 4, 50121, Florence, Italy
Abstract:The present work aims to assess the hazard for human health related to CO2 anomalous concentrations in air emitted from dry gas vents located in the NE area of Mt. Amiata volcano (Tuscany, central Italy). A geochemical multi-methodological approach is adopted to determine the composition and the flux rate of the gas discharges in order to establish (1) the origin of the gas vents and (2) the behaviour of the discharged gases in the areas surrounding the emission sites. The gas vents are hosted within sub-circular morphological depressions (??~?10–30 m), which likely originated by the collapse of cavities formed at shallow depth in the ground by dissolution of Triassic anhydrite formations and recent travertine deposits. CaCO3 and CaSO4 dissolution is mainly related to the underground circulation of CO2-rich fluids whose hydrological pattern is regulated by local and regional tectonics. The CO2-rich (up to 996,070 μmol/mol) gases tend to accumulate within the topographic lows, thus creating a sort of CO2 ponds, and the knowledge of their evolution in time and space is important to evaluate the related hazard. Consequently, a conceptual model of CO2 diffusion in air is developed to understand the dynamic of the CO2 accumulation/dispersion process based on (1) a 24-h continuous measurement of the CO2 flux from one of the main emission sites and (2) the recording of the main meteoric parameters, i.e. air temperature, wind direction and speed to check their influence. The results indicate that the threshold of CO2 concentrations considered dangerous for the human health is frequently overcome. Moreover, when meteoric conditions, i.e. low wind and cloudy weather, did not allow a rapid dispersion of the gas phase emitted from the dry vents, CO2-rich clouds periodically overflowed the morphological depressions for several tens of meters without any significant mixing with air. On the basis of these considerations, the monitoring of the output rate from the main gas emissions, combined with the continuous control of the local meteorological parameters, may be considered an efficient procedure to mitigate the CO2 hazard deriving from dry gas vents. An improvement of the protocol can be achieved in case of installations of CO2 sensors located in the most sensitive areas and connected to a telemetry system able to transmit the data in real time to the closest Civil Defence centre. The CO2 degassing sites can also represent a tourist attraction after the installation of suitable metallic fences and a proper campaign of information about these natural phenomena.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号