首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Optimization of phosphorus removal in uniFed SBR system for domestic wastewater treatment
Authors:Xuguang Tang  Shuying Wang  Yongzhen Peng
Institution:Key Laboratory of Beijing Water Quality Science and Water Environment Recovery Engineering, Beijing University of Technology, Beijing 100124, China
Abstract:The characteristic of phosphorus removal and appropriate change of the traditional operation modes were investigated in UniFed sequencing batch reactor (SBR) laboratory-scale apparatus (40 L), treating actual domestic wastewater with low ratios of C/N (2.57) and C/P (30.18), providing theoretical basis for actual application of wastewater treatment plant. UniFed SBR system with its unique operation mode had the distinct superiority of phosphorus removal. On this occasion, the effect of volumetric exchange ratio (VER) and the method of influent introduction for phosphorus removal were studied. When the carbon source became the limiting factor to phosphorus release, the higher the VER, the lower the phosphorus concentration in the effluent. Three different influent patterns, including one-time filling, four-time filling, and continuous filling with the same quantity of wastewater could increase the release rate of anaerobic phosphorus from 0.082 to 0.143 mg·P·(L·min)-1. Appropriate change of the traditional operation modes could optimize the efficiency of phosphorus removal. When the feed/ decant time was extended from 2 h to 4 h, the phosphorous removal efficiency increased from 59.93% to 88.45% without any external carbon source. In the mode of alternation of anoxic-aerobic (A/O) condition, phosphorous removal efficiency increased from 55.07% to 72.27% clearly. The carbon source in the influent can be used adequately, and denitrifying phosphorus removal was carried out in anoxic stage 2 (A2). This mode was optimal for the treatment of actual domestic wastewater with low C/N and C/P ratios.
Keywords:UniFed sequencing batch reactor (SBR)  phosphorus removal  volumetric exchange ratio (VER)  alternation of anoxic-aerobic (A/O)  domestic wastewater  
本文献已被 SpringerLink 等数据库收录!
点击此处可从《Frontiers of Environmental Science & Engineering》浏览原始摘要信息
点击此处可从《Frontiers of Environmental Science & Engineering》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号