首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Influence of cosolvents on quinoline sorption by subsurface materials and clays
Authors:J M Zachara  C C Ainsworth  R L Schmidt  C T Resch
Institution:1. Key Laboratory of Hunan Province for Water Environment and Agriculture Product Safety, College of Chemistry and Chemical Engineering, Central South University, Changsha, Hunan 410083, China;2. College of Materials Science and Engineering, Hunan University, Changsha, Hunan 410082, China
Abstract:Quinoline sorption was measured on Na-saturated subsurface materials, a natural clay isolate, and montmorillonite, and was dominated by exchange of the quinolinium ion. In water/methanol and water/acetone mixtures, quinoline sorption on the subsoils and clays was lower than from water. In cosolvent, sorption followed the ionization fraction indicating the continued predominance of ion exchange. The reduction in quinoline sorption by cosolvent was similar for all the subsoils and clays indicating commonality in the surface-solute-solvent interaction. Conditional equilibrium constants (cKex) for quinoline exchange on the subsoils in water/methanol mixtures decreased log-linearly with mole percent cosolvent up to 20% methanol. This decrease closely followed the increase in quinoline solubility in the cosolvent mixtures. Acetone caused greater reduction in sorption than methanol, at comparable mole percent, in accordance with its lower dielectric constant and enhanced solvating power. A generalized thermodynamic approach based on the concept of transfer activity coefficients was developed to account for the cosolvent effect on cKex, and was successfully applied to the quinoline sorption data. The thermodynamic analysis suggested that enhanced solvation of the organic cation in the bulk solvent and desolvation of Na+ at the charged surface predominate the cosolvent effect.
Keywords:
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号