首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Landslide probability mapping by considering fuzzy numerical risk factor (FNRF) and landscape change for road corridor of Uttarakhand,India
Authors:Sur  Ujjwal  Singh  Prafull  Rai  Praveen Kumar  Thakur  Jay Krishna
Institution:1.Amity Institute of Geo-Informatics and Remote Sensing, Amity University, Sector 125, Noida, UP, India
;2.Department of Geology, Central University of South Bihar, Gaya, 824236, India
;3.Department of Geography K.M.C, Language University (U.P. State Govt. University), Lucknow, UP, India
;4.Umwelt und Information stechnologgie, UIZ, Berlin, Germany
;
Abstract:

Landslide poses severe threats to the natural landscape of the Lesser Himalayas and the lives and economy of the communities residing in that mountainous topography. This study aims to investigate whether the landscape change has any impact on landslide occurrences in the Kalsi-Chakrata road corridor by detailed investigation through correlation of the landslide susceptibility zones and the landscape change, and finally to demarcate the hotspot villages where influence of landscape on landslide occurrence may be more in future. The rational of this work is to delineate the areas with higher landslide susceptibility using the ensemble model of GIS-based multi-criteria decision making through fuzzy landslide numerical risk factor model along the Kalsi-Chakrata road corridor of Uttarakhand where no previous detailed investigation was carried out applying any contemporary statistical techniques. The approach includes the correlation of the landslide conditioning factors in the study area with the changes in land use and land cover (LULC) over the past decade to understand whether frequent landslides have any link with the physical and hydro-meteorological or, infrastructure, and socioeconomic activities. It was performed through LULC change detection and landslide susceptibility mapping (LSM), and spatial overlay analysis to establish statistical correlation between the said parameters. The LULC change detection was performed using the object-oriented classification of satellite images acquired in 2010 and 2019. The inventory of the past landslides was formed by visual interpretation of high-resolution satellite images supported by an intensive field survey of each landslide area. To assess the landslide susceptibility zones for 2010 and 2019 scenarios, the geo-environmental or conditioning factors such as slope, rainfall, lithology, normalized differential vegetation index (NDVI), proximity to road and land use and land cover (LULC) were considered, and the fuzzy LNRF technique was applied. The results indicated that the LULC in the study area was primarily transformed from forest cover and sparse vegetation to open areas and arable land, which is increased by 6.7% in a decade. The increase in built-up areas and agricultural land by 2.3% indicates increasing human interference that is continuously transforming the natural landscape. The landslide susceptibility map of 2019 shows that about 25% of the total area falls under high and very high susceptibility classes. The result shows that 80% of the high landslide susceptible class is contained by LULC classes of open areas, scrubland, and sparse vegetation, which point out the profound impact of landscape change that aggravate landslide occurrence in that area. The result acclaims that specific LULC classes, such as open areas, barren-rocky lands, are more prone to landslides in this Lesser Himalayan road corridor, and the LULC-LSM correlation can be instrumental for landslide probability assessment concerning the changing landscape. The fuzzy LNRF model applied has 89.6% prediction accuracy at 95% confidence level which is highly satisfactory. The present study of the connection of LULC change with the landslide probability and identification of the most fragile landscape at the village level has been instrumental in delineation of landslide susceptible areas, and such studies may help the decision-makers adopt appropriate mitigation measures in those villages where the landscape changes have mainly resulted in increased landslide occurrences and formulate strategic plans to promote ecologically sustainable development of the mountainous communities in India's Lesser Himalayas.

Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号