首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Numerical analysis of keyhole geometry and temperature profiles in plasma arc welding
Authors:CS Wu  YS Huo
Institution:MOE Key Laboratory for Liquid-Solid Structure Evolution and Materials Processing, and Institute of Materials Joining, Shandong University, Jinan 250061, China
Abstract:In keyhole plasma arc welding (PAW), the formation of the keyhole involves complicated thermo-physical mechanism. The shape and dimensions of the keyhole directly determine the heat deposition along the thickness direction of the test plates, the penetration depth and the weld bead quality. Based on analysis of the forces acting on the weld pool, a keyhole model is established according to the force-balance condition on the keyhole wall. The shape and dimensions of quasi-steady state keyhole are numerically predicted. The keyhole shape and size are used to calibrate some distribution parameters of the combined volumetric heat source which takes into consideration the geometrical feature of welds with larger ratio of penetration depth to width and volumetric distribution characteristic of the plasma heat intensity along the plate thickness direction. The temperature fields on stainless steel plates are numerically simulated. The calculated fusion line at the transverse cross-section of PAW welds are compared with the experimental measurements. It is found that the predicted results are in agreement with the experimental data.
Keywords:Numerical simulation  Keyhole plasma arc welding  Keyhole geometry  Temperature field
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号