首页 | 本学科首页   官方微博 | 高级检索  
     

基于改进支持向量机的石煤提钒行业清洁生产评价研究
引用本文:李佳,张一敏,刘振宇,包申旭,刘涛. 基于改进支持向量机的石煤提钒行业清洁生产评价研究[J]. 环境科学学报, 2016, 36(3): 1113-1120
作者姓名:李佳  张一敏  刘振宇  包申旭  刘涛
作者单位:中南民族大学资源与环境学院, 武汉 430074,武汉理工大学资源与环境工程学院, 武汉 430070,中南民族大学资源与环境学院, 武汉 430074,武汉理工大学资源与环境工程学院, 武汉 430070,武汉理工大学资源与环境工程学院, 武汉 430070
基金项目:环保公益性行业科研专项(No.201009013);中央高校基本科研业务费专项(No.CZQ15016)
摘    要:采用遗传算法(GA)对支持向量机(SVM)进行改进,并将其应用于石煤提钒行业清洁生产评价.在系统研究石煤提钒工艺类型的基础上,根据前期已建立的石煤提钒行业清洁生产评价指标体系,提出GA改进SVM的应用思路,通过对3种工艺类型企业的现场数据采集,形成训练和测试样本,并利用GA算法确定出各类参数(惩罚参数C和核函数参数g),分别为强酸浸工艺C=2.1049,g=5.2184;弱酸浸工艺C=0.0035286,g=1.9947;水浸工艺C=0.39587,g=1.4105.GA-SVM模型测试结果表明,分类精度达到100%.通过与其他评价方法对比表明,训练好的GA-SVM方法针对小样本数据在分类精度和可操作性上都较其他方法有明显优势,实现了对石煤提钒行业清洁生产水平的定量评价.

关 键 词:石煤提钒  清洁生产  支持向量机  遗传算法  评价方法
收稿时间:2015-05-14
修稿时间:2015-07-25

Assessment for cleaner production of extracting vanadium from stone coal based on the support vector machine
LI Ji,ZHANG Yimin,LIU Zhenyu,BAO Shenxu and LIU Tao. Assessment for cleaner production of extracting vanadium from stone coal based on the support vector machine[J]. Acta Scientiae Circumstantiae, 2016, 36(3): 1113-1120
Authors:LI Ji  ZHANG Yimin  LIU Zhenyu  BAO Shenxu  LIU Tao
Affiliation:College of Life Sciences, South-Central University for Nationalities, Wuhan 430074,College of Resource and Environmental Engineering, Wuhan University of Technology, Wuhan 430070,College of Life Sciences, South-Central University for Nationalities, Wuhan 430074,College of Resource and Environmental Engineering, Wuhan University of Technology, Wuhan 430070 and College of Resource and Environmental Engineering, Wuhan University of Technology, Wuhan 430070
Abstract:We improved the Support Vector Machine (SVM) using Genetic Algorithm (GA) and applied it to the cleaner production (CP) assessment in the industry of vanadium extraction from stone coal in this paper. The application of improving SVM by GA was proposed based on the current assessment indicator framework of CP in the business and the systematic research on the process types of vanadium extraction from stone coal. By analyzing the acquired data collections from three different enterprises, a series of parameters of each process were determined using the GA algorithm. In the strong acid leaching process, C value was 2.1049 and g value of 5.2184. On the other hand, in the weak acid leaching process, C and g were lowered to 0.0035286 and 1.9947, respectively. In the water leaching process, C and g was 0.39587 and 1.4105, respectively. The results of GA-SVM improvement model showed that the classification accuracy could be as high as 100%. We also made comparisons with other assessment method, it was demonstrated that the well-trained GA-SVM method had significantly improved the classification accuracy and operating process of a limited number of data samples. The GA-SVM can be used to quantitatively assess the CP level in the industry of vanadium extraction from stone coal.
Keywords:extracting vanadium from stone coal  cleaner production  support vector machine(SVM)  genetic algorithm(GA)  assessment methods
本文献已被 CNKI 万方数据 等数据库收录!
点击此处可从《环境科学学报》浏览原始摘要信息
点击此处可从《环境科学学报》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号