首页 | 本学科首页   官方微博 | 高级检索  
     


Source emissions and climate change impacts on the multimedia transport and fate of persistent organic pollutants, Chaohu watershed, eastern China
Authors:Xianghui Cao  Shouliang Huo  Hanxiao Zhang  Jiaqi Zheng  Zhuoshi He  Chunzi M  Shuai Song
Affiliation:1. State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Science, Beijing 100012, China;2. Beijing Normal University, Beijing 100874, China;3. State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
Abstract:Emission intensity and climate change control the transport flux and fate of persistent organic pollutants (POPs) in multiple environmental compartments. This study applied a multimedia model (BETR model) to explore alternations in the spatio-temporal trends of concentrations and transport flux of benzopyrene (BaP), phenanthrene (Phe), perfluorooctane sulfonates (PFOS) and polychlorinated biphenyls (PCBs) in the Chaohu watershed, located in the lower reaches of the Yangtze River, China in response to changes in source emissions and climate. The potential historic and future risks of these pollutants also were assessed. The results suggest that current trends in concentrations and transport were similar to that of their emissions between 2005 and 2018. During the next 100 years, temporal trends and spatial patterns were not predicted to change significantly, which is consistent with climate change. Based on sensitivity and correlation analyses, climate change had significant effects on multi-media concentrations and transport fluxes of BaP, Phe, PFOS and PCBs, and rainfall intensity was the predominant controlling factor. Risk quotients (RQs) of BaP and Phe-in soil increased from 0.42 to 0.95 and 0.06 to 0.35, respectively, from 2005 to 2090, indicating potential risks. The RQs of the other examined contaminants exhibited little potential risk in soil, water, or sediment. Based on spatial patterns, it was inferred that the ecosystem around Lake Chaohu is the most at risk. The study provides insights needed for local pollution control of POPs in the Chaohu watershed. In addition, the developed approach can be applied to other watersheds world-wide.
Keywords:Corresponding author.  Climate change  POP emissions  Multimedia model  Contaminant transport  Risk assessment
点击此处可从《环境科学学报(英文版)》浏览原始摘要信息
点击此处可从《环境科学学报(英文版)》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号