首页 | 本学科首页   官方微博 | 高级检索  
     检索      


The influences of fly ash on stabilization for Cd in contaminated soils
Authors:Wang  Ping  Li  Ronghua  Guo  Di  Guo  Zhanyu  Mahar  Amanullah  Du  Juan  Zhang  Zengqiang
Institution:1.College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi Province, 712100, People’s Republic of China
;2.Key Laboratory of Ministry of Education on Pollution Control and Ecosystem Restoration in Industry Clusters, Guangdong Provincial Engineering and Technology Research Center for Environmental Risk Prevention and Emergency Disposal, School of Environment and Energy, South China University of Technology, Guangzhou, 510006, Guangdong, China
;3.Centre for Environmental Sciences, University of Sindh, Jamshoro, 76080, Pakistan
;
Abstract:

Soil contaminated with potentially toxic metals (PTMs) has being a global environmental issue, which needs to be addressed on the priority basis. Fly ash (FA) is a kind of low-cost alkaline materials, which has been widely used in remediation of soil contaminated by PTMs, while the effects of FA on the stability for PTMs in contaminated farmland soil are still not clearly evaluated. In this study, cadmium (Cd) contaminated soil samples, collected from Shaanxi (SX), Hubei (HB), and Zhejiang (ZJ) province of China, were amended with FA addition (0, 1%, 2.5%, 5%, and 10% dose), and 1-year changes of Cd availability in soil samples were focused on. In addition, biological assessment method through pot culture was carried out to evaluate the reuse potential of Cd contaminated soils amended by FA. The result indicated that FA had a notable impact on decreasing the Cd mobility of SX soil (sand type), with 18.2~52.1% reduction in the DTPA extractable solution, followed by HB soil with 5.9~16.7% reduction, but no obvious effect of FA on ZJ soil (clay type) was observed. Furthermore, the results of pot experiment revealed that FA application could increase the biomass of Chinese cabbage. However, the DTPA extractable Cd in soils after planation and the Cd accumulation of plant increased. The results revealed that FA was not a promising soil stabilizer to immobilize HMs in Cd contaminated soil, and careful consideration should be given to Cd contaminated soils with FA restoration especially in their using for farmland productive due to the remaining risk of Cd bioavailability. These results also contributed to provide references for similar soil pollution remediation.

Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号