首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Uranium and neptunium retention mechanisms in Gallionella ferruginea/ferrihydrite systems for remediation purposes
Authors:Krawczyk-Bärsch  Evelyn  Scheinost  Andreas C  Rossberg  André  Müller  Katharina  Bok  Frank  Hallbeck  Lotta  Lehrich  Jana  Schmeide  Katja
Institution:1.Helmholtz-Zentrum Dresden-Rossendorf, Institute of Resource Ecology, Bautzner Landstr. 400, 01328, Dresden, Germany
;2.The Rossendorf Beamline, ESRF, F-38043, Grenoble, France
;3.Microbial Analytics Sweden AB (MICANS), SE-43535, M?lnlycke, Sweden
;
Abstract:

The ubiquitous β-Proteobacterium Gallionella ferruginea is known as stalk-forming, microaerophilic iron(II) oxidizer, which rapidly produces iron oxyhydroxide precipitates. Uranium and neptunium sorption on the resulting intermixes of G. ferruginea cells, stalks, extracellular exudates, and precipitated iron oxyhydroxides (BIOS) was compared to sorption to abiotically formed iron oxides and oxyhydroxides. The results show a high sorption capacity of BIOS towards radionuclides at circumneutral pH values with an apparent bulk distribution coefficient (Kd) of 1.23 × 104 L kg?1 for uranium and 3.07 × 105 L kg?1 for neptunium. The spectroscopic approach by X-ray absorption spectroscopy (XAS) and ATR FT-IR spectroscopy, which was applied on BIOS samples, showed the formation of inner-sphere complexes. The structural data obtained at the uranium LIII-edge and the neptunium LIII-edge indicate the formation of bidentate edge-sharing surface complexes, which are known as the main sorption species on abiotic ferrihydrite. Since the rate of iron precipitation in G. ferruginea-dominated systems is 60 times faster than in abiotic systems, more ferrihydrite will be available for immobilization processes of heavy metals and radionuclides in contaminated environments and even in the far-field of high-level nuclear waste repositories.

Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号