首页 | 本学科首页   官方微博 | 高级检索  
     

基于Landsat 8遥感数据的天津市地表温度反演
引用本文:付盈,国巧真,吴晓旭. 基于Landsat 8遥感数据的天津市地表温度反演[J]. 中国环境监测, 2018, 34(5): 165-172
作者姓名:付盈  国巧真  吴晓旭
作者单位:天津城建大学地质与测绘学院;北京师范大学全球变化与地球系统科学研究院
基金项目:天津市自然科学基金资项项目(16JCYBJC21400)
摘    要:
以Landsat 8遥感数据为数据源,进行天津市地表温度反演研究。首先采用单通道算法反演地表温度,并利用均值标准差法进行温度分级。然后建立不同温度等级面积比例的估算模型。再通过随机样点,从不同温度等级和土地覆盖类型2个角度,分别建立并比较不同类样点的地表温度与各指数的拟合模型。结果表明:次高温区域面积比例与人口密度、人均GDP都具有较高的决定系数;地表温度与NDVI、BAEM的二元线性回归决定系数高于地表温度与单一指数的决定系数;将样点分类后,低温点与MNDBI的决定系数高于其他温度等级样点,水域和植被样点与各种指数的决定系数高于其他地物类型样点。

关 键 词:地表温度  指数  拟合  反演  单通道算法
收稿时间:2017-07-21
修稿时间:2018-01-10

Land Surface Temperature Inversion in Tianjin City based on Landsat 8 Remote Sensing Data
FU Ying,GUO Qiaozhen and WU Xiaoxu. Land Surface Temperature Inversion in Tianjin City based on Landsat 8 Remote Sensing Data[J]. Environmental Monitoring in China, 2018, 34(5): 165-172
Authors:FU Ying  GUO Qiaozhen  WU Xiaoxu
Affiliation:School of Geology and Geomatics, Tianjin Chengjian University, Tianjin 300384, China,School of Geology and Geomatics, Tianjin Chengjian University, Tianjin 300384, China and College of Global Change and Earth System Science, Beijing Normal University, Beijing 100875, China
Abstract:
In this paper, Landsat 8 remote sensing data was used as data source to study the surface temperature inversion in Tianjin. The land surface temperature was retrieved using the single-channel algorithm. A mean standard deviation method was used to grade temperature. The estimating models of the area proportion of different temperature-level were built respectively. Then, random sampling points were chosen and classified from two perspectives including temperature levels and land cover types. Land surface temperature of each type sampling points was fitted respectively with each index, and fitting models were compared. The results showed that:The area proportion of sub-high temperature areas had relatively high determination coefficient with population density and per capita GDP. The binary linear regression of surface temperature fitting with NDVI and BAEM had a higher determination coefficient than that for the surface temperature fitting with a single index. After classification of sample points, the determination coefficient between low temperature samples and MNDBI was higher than those for other temperature-level sampling points. The determination coefficient between water area samples and each kind of indexes and the determination coefficient between vegetation samples and each kind of indexes were both higher than those for other land-cover type sampling points.
Keywords:land surface temperature  index  fitting  inversion  single-channel algorithm
本文献已被 CNKI 等数据库收录!
点击此处可从《中国环境监测》浏览原始摘要信息
点击此处可从《中国环境监测》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号