首页 | 本学科首页   官方微博 | 高级检索  
     

基于BP神经网络的儿童卧室内灰尘PAEs浓度预测
引用本文:李柯秀,孙婵娟,张佳玲,邹志军,黄晨. 基于BP神经网络的儿童卧室内灰尘PAEs浓度预测[J]. 环境监测管理与技术, 2022, 34(1): 56-59. DOI: 10.3969/j.issn.1006-2009.2022.01.012
作者姓名:李柯秀  孙婵娟  张佳玲  邹志军  黄晨
作者单位:上海理工大学,上海 200093
基金项目:国家自然科学基金资助项目(51708347,81861138005);国家重点研发计划基金资助项目〖JP2〗(2017YFC0702700);上海市自然科学基金资助项目(21ZR1444800)
摘    要:在实测数据的基础上,以邻苯二甲酸酯(PAEs)的各类影响因素为自变量,PAEs浓度为因变量,采用Back-propagation(BP)神经网络建立儿童卧室内PAEs浓度预测模型.结果表明,该模型的预测效果较理想,其中,STD比值均>0.5,NMB均接近0,EMR均<19%.以室内环境与儿童健康(CCHH)课题组天津地...

关 键 词:邻苯二甲酸酯  反向传播神经网络  浓度预测  灰尘  儿童卧室

Prediction of PAEs Concentration in Dust in Children's Bedroom Based on BP Neural Network
LI Ke-xiu,SUN Chan-juan,ZHANG Jia-ling,ZOU Zhi-jun,HUANG Chen. Prediction of PAEs Concentration in Dust in Children's Bedroom Based on BP Neural Network[J]. The Administration and Technique of Environmental Monitoring, 2022, 34(1): 56-59. DOI: 10.3969/j.issn.1006-2009.2022.01.012
Authors:LI Ke-xiu  SUN Chan-juan  ZHANG Jia-ling  ZOU Zhi-jun  HUANG Chen
Abstract:Based on measured data, the prediction model of PAEs concentration in childrens bedroom was established by back propagation (BP) neural network with various influencing factors of phthalates (PAEs) as independent variables and PAEs concentration as dependent variables. The results showed that the prediction effect of this model was ideal, the ratios of STD were all greater than 0.5, NMB were all close to 0 and EMR were all less than 19%. According to the relevant data from a research of indoor environment and childrens health in Tianjin, the concentration of DEHP was predicted. The EMR between average measured value and average predicted value was 7.7%, indicating that the prediction accuracy of the model was high.
Keywords:Phthalate   Back propagation neural network   Concentration prediction   Dust   Childrens bedroom
本文献已被 万方数据 等数据库收录!
点击此处可从《环境监测管理与技术》浏览原始摘要信息
点击此处可从《环境监测管理与技术》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号