首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Effects of hydraulic retention time on nitrification activities and population dynamics of a conventional activated sludge system
Authors:Hongyan Li  Yu Zhang  Min Yang  Yoichi Kamagata
Institution:1. State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; 2. Research Institute of Genome-based Biofactory, National Institute of Advanced Industrial Science and Technology, Sapporo 062-8517, Japan
Abstract:The effects of hydraulic retention time (HRT) on the nitrification activities and population dynamics of a conventional activated sludge system fed with synthetic inorganic wastewater were investigated over a period of 260 days. When the HRT was gradually decreased from 30 to 5 h, the specific ammonium-oxidizing rates (SAOR) varied between 0.32 and 0.45 kg NH4+-N (kg mixed liquor suspended solids (MLSS)·d)-1, and the specific nitrate-forming rates (SNFR) increased from 0.11 to 0.50 kg NO3--N (kg MLSS·d)-1, showing that the decrease in HRT led to a significant increase in the nitrite oxidation activity. According to fluorescence in situ hybridization (FISH) analysis results, the proportion of ammonia-oxidizing bacteria (AOBs) among the total bacteria decreased from 33% to 15% with the decrease in HRT, whereas the fraction of nitrite-oxidizing bacteria (NOBs), particularly the fast-growing Nitrobacter sp., increased significantly (from 4% to 15% for NOBs and from 1.5% to 10.6% for Nitrobacter sp.) with the decrease in HRT, which was in accordance with the changes in SNFR. A short HRT favored the relative growth of NOBs, particularly the fast-growing Nitrobacter sp., in the conventional activated sludge system.
Keywords:ammonia-oxidizing bacteria  hydraulic retention time  nitrification activity  nitrite-oxidizing bacteria  population dynamics  
本文献已被 SpringerLink 等数据库收录!
点击此处可从《Frontiers of Environmental Science & Engineering》浏览原始摘要信息
点击此处可从《Frontiers of Environmental Science & Engineering》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号