首页 | 本学科首页   官方微博 | 高级检索  
     


Experimental and numerical study of the fuel effect on flame propagation in long open tubes
Affiliation:1. Department of Mechanical and Industrial Engineering, Norwegian University of Science and Technology NTNU, Richard Birkelands vei 2B, 7034 Trondheim, Norway;2. Department of Industrial and Systems Engineering and Chairman, CoE in Safety Engineering and Analytics, Indian Institute of Technology Kharagpur, Kharagpur, 721302 West Bengal, India;3. Department of Mechanical and Industrial Engineering, University of Brescia, via Branze 38, 25123 Brescia, Italy;4. Department of Mechanical and Aerospace Engineering, Sapienza University of Rome, Via Eudossiana, 18, 00184 Rome, Italy;1. College of Safety Science and Engineering, Nanjing Tech University, Nanjing, Jiangsu, 210009, China;2. Jiangsu Key Laboratory of Hazardous Chemicals Safety and Control, Nanjing, Jiangsu, 210009, China;1. School of Emergency Management and Safety Engineering, China University of Mining and Technology (Beijing), Beijing, 100083, China;2. State Key Laboratory of Coal Resources and Safety Mining, China University of Mining and Technology, Beijing, 100083, China;1. School of Civil and Resource Engineering, University of Science and Technology Beijing, Beijing 100083, China;2. School of Mechatronical Engineering, Beijing Institute of Technology, Beijing 100081, China;3. AVIC Areo Polytechnology Establishment, Beijing 100028, China;4. Department of Aerospace Science and Technology, Space Engineering University, Beijing 101416, China;1. School of Environmental Science and Safety Engineering, Tianjin University of Technology, Tianjin, 300384, China;2. Tianjin Key Laboratory of Hazardous Waste Safety Disposal and Recycling Technology, Tianjin, 300384, China;1. College of Mechanical and Electrical Engineering, China University of Petroleum (East China), Qingdao, 266580, China;2. College of New Energy, China University of Petroleum (East China), Qingdao, 266580, China;3. CNPC Tubular Goods Research Institute, Xian, 710077, China
Abstract:Previous works (Daubech et al., 2019) were dedicated to gaseous flame acceleration along long pipes with a set of cases studied both experimentally and numerically. In these cases, the flammable mixture was initially quiescent and homogenously distributed. The impact of the tube diameter and material were studied trough both approaches for rather slow flames, the fuel being methane. While main features of the real flame were recovered by the chosen CFD method, some limits remained.A new experimental dataset is detailed and analyzed with a quicker flame, the fuel being hydrogen and the same experimental set-up as the one used for measuring slow flames. Thus, the fuel effect on the flame dynamics can be directly highlighted.A simple CFD approach is tested for recovering two distinct flame behaviors: a deflagration flame and another undergoing deflagration-to-detonation transition. Furthermore, the modelling results are used to propose elements of interpretation for flame acceleration.
Keywords:
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号