首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Numerical studies of acidification processes within and below clouds with a flow-through chemical reactor model
Institution:Environmental Research Division, Argonne National Laboratory, Argonne, IL 60439, U.S.A.
Abstract:A flow-through chemical reactor model has been exercised to assess the importance of various oxidation reactions and cloud processes on wet removal and redistribution of atmospheric pollutants and to investigate the effect of in-cloud acidification on precipitation chemistry at the surface. Preliminary results indicate that in-cloud acidification accounts for more than 60% of the wet deposited acids derived from acidification of initial SO2, that 42–57% of water-soluble, non-reactive NH3 and HNO3 are removed by wet deposition. The pseudo-first-order conversion rate of SO2 to SO42? ranges from 3 to 25% h ?1 depending on initial and boundary conditions.Sensitivity studies have been carried out to test the importance of time evolution of clouds on partitioning of pollutants in the atmosphere and to investigate the variability of precipitation chemistry due to changes in rate constants. The distributions of NH3 and HNO3 are found to be dependent largely on the cloud microphysical parameters, while the distributions of H2O2 and SO2 depend largely on initial conditions of both species. Individual physical and chemical mechanisms can determine the overall rate of sulfate wet deposition at different stages of cloud evolution.
Keywords:
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号