首页 | 本学科首页   官方微博 | 高级检索  
     检索      

铝炭微电解处理刚果红废水的效果及脱色机理研究
引用本文:傅强根,胡勇有.铝炭微电解处理刚果红废水的效果及脱色机理研究[J].环境科学学报,2013,33(6):1527-1534.
作者姓名:傅强根  胡勇有
作者单位:1. 华南理工大学环境与能源学院,广州,510006
2. 华南理工大学环境与能源学院,广州510006;工业聚集区污染控制与生态修复教育部重点实验室,广州510006
基金项目:国家水体污染控制和治理重大科技专项(No.2009ZX07211-005)
摘    要:采用铝炭微电解法处理刚果红废水,通过批式实验和正交试验考察了主要因素对刚果红脱色及COD去除效果的影响,并采用紫外扫描、离子色谱及LC-MS分析了脱色产物.结果表明,在铝粉投加量为8~24 g·L-1范围内,刚果红脱色率及COD去除率均随铝粉投加量的增加而提高,合适的铝粉投加量为16 ~24 g·L-1;刚果红脱色率和COD去除率随着铝炭质量比的减小呈现先增加后降低的趋势,适宜的铝炭质量比为1∶3~1∶1;初始pH对处理效果影响最大,在pH为10~12.5时,刚果红脱色率及COD去除率随着pH升高而急剧增加;在溶解氧为1.25 ~7.59 mg·L-1的范围内,刚果红脱色率及COD去除率随着溶解氧的升高而降低.最佳条件(铝粉投加量24 g·L-1、铝炭质量比1:2、pH=12、反应时间90 min)下,刚果红脱色率及COD去除率分别为90.4%和78.6%刚果红脱色历程为:刚果红分子中的N=N双键在新生态H]的攻击下断裂,生成3,4-二氨基萘-1-磺酸盐和4-氨基3-((4’-氨基-1,1'-联苯]-4-基)偶氮基)萘-1磺酸盐;后者在H]的进一步作用下,发生N=N双键的断裂,转化为3,4-二.氨基萘-1-磺酸盐和联苯胺,萘环开环和C-S键断键,分别生成4-氨基-3-((4’-氨基-1,1’-联苯]-4-基)偶氮基)-1-磺酸盐和2-((4'-氨基-1,1’-联苯]-4-基)偶氮基)-1-萘胺.研究表明,铝炭微电解法不能将刚果红完全矿化.

关 键 词:铝炭微电解  刚果红  脱色
收稿时间:2012/8/27 0:00:00
修稿时间:2012/9/24 0:00:00

Treatment effect and decolorization mechanism of Congo red wastewater by aluminum-carbon microelectrolysis
FU Qianggen and HU Yongyou.Treatment effect and decolorization mechanism of Congo red wastewater by aluminum-carbon microelectrolysis[J].Acta Scientiae Circumstantiae,2013,33(6):1527-1534.
Authors:FU Qianggen and HU Yongyou
Institution:School of Environment and Energy, South China University of Technology, Guangzhou 510006;1. School of Environment and Energy, South China University of Technology, Guangzhou 510006;2. The Key Laboratory of Pollution Control and Ecosystem Restoration in Industry Clusters of Ministry of Education, Guangzhou 510006
Abstract:Congo red wastewater was treated by aluminum-carbon microelectrolysis, and key factors affecting the decolorization and COD removal were investigated by batch and orthogonal experiments.Decolorization products were determined by UV spectrum, ion chromatography and LC-MS.The results showed that the decolorization and COD removal of Congo red increased with the dosage of aluminum powder in the range of 8~24 g·L-1, and the appropriate dosages were determined in the range of 16~24 g·L-1.The decolorization and COD removal of Congo red first increased and then decreased with increase of the Al/C mass ratio and the appropriate ratio was determined as 1:3~1:1.Initial pH was the key factor affecting the treatment process.The decolorization of Congo red was significantly enhanced with increasing pH in the range of 10~12.5.An increase in DO in the range of 1.25~7.59 mg·L-1 led to decreased decolorization and COD removal of Congo red.Under the optimum conditions (aluminum powder 24 g·L-1, Al/C mass ratio 1:2, pH=12 and reaction time 90 min), the decoloration and COD removal of Congo red rose up to 90.4% and 78.6%, respectively.The decolorization pathways of Congo red are proposed as follows: the azo linkage within Congo red molecule is firstly broken down by H] and two intermediates, 3,4-diaminonaphthalene-1-sulfonate and 4-amino-3-((4'-amino-1,1'-biphenyl]-4-yl)diazenyl) naphthalene-1-sulfonate, are formed; the latter is further transformed to 3,4-diaminonaphthalene-1-sulfonate and benzidine, 4-amino-3-((4'-amino-1,1'-biphenyl]-4-yl)diazenyl)-1-sulfonate and 2-((4'-amino-1,1'-biphenyl]-4-yl)diazenyl)naphthalen-1-amine are formed due to ring opening of naphthalene and breakdown of C-S linkage.Congo red cannot be mineralized by aluminum-carbon microelectrolysis.
Keywords:Al-C microelectrolysis  Congo red  decoloration
本文献已被 万方数据 等数据库收录!
点击此处可从《环境科学学报》浏览原始摘要信息
点击此处可从《环境科学学报》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号