Abstract: | ABSTRACT: Many urban and suburban communities in the Midwest are seeking to establish sustainable, morphologically and hydraulically varied, yet dynamically stable fluvial systems that are capable of supporting healthy, biologically diverse aquatic ecosystems — a process known as stream naturalization. This paper describes an integrated research program that seeks to develop a scientific and technological framework to support two stream naturalization projects near Chicago, Illinois. The research program integrates theory and methods in fluvial geomorphology, aquatic ecology, hydraulic engineering and social theory. Both the conceptual and the practical challenges of that integration are discussed. Scientific and technical support emphasize the development of predictive tools to evaluate the performance of possible naturalization designs at scales most appropriate to community based projects. Social analysis focuses on place based evaluations of how communities formulate an environmental vision and then, through decision making, translate this vision into specific stream naturalization strategies. Integration of scientific and technical with social components occurs in the context of community based decision making as the predictive tools are employed by project scientists to help local communities translate their environmental visions into concrete environmental designs. Social analysis of this decision making process reveals how the interplay between the community's vision of what they want the watershed to become, and the scientific perspective on what the watershed can become to achieve the community's environmental goals, leads to the implementation of specific stream naturalization practices. |