首页 | 本学科首页   官方微博 | 高级检索  
     

基于PCA-GA-BP神经网络的瓦斯含量预测分析
引用本文:曹博1,白刚2,3,李辉4. 基于PCA-GA-BP神经网络的瓦斯含量预测分析[J]. 中国安全生产科学技术, 2015, 11(5): 84-90. DOI: 10.11731/j.issn.1673-193x.2015.05.013
作者姓名:曹博1  白刚2  3  李辉4
作者单位:(1.辽宁工程技术大学 矿业学院,辽宁 阜新 123000;2.辽宁工程技术大学 安全科学与工程学院,辽宁 阜新 123000;3.矿山热动力灾害与防治教育部重点实验室,辽宁 阜新 123000;4. 安徽省煤矿安全监察局淮北监察分局,安徽 淮北 235000)
摘    要:为提高煤层瓦斯含量预测的效率和准确率,提出了先采用主成份分析(PCA)方法来降低变量间的相关性,然后将遗传算法(GA)与BP神经网络相结合的煤层瓦斯含量预测的新方法。为了避免BP神经网络收敛速度慢、易陷入局部极小值等问题,算法采用GA对BP神经网络的权值和阈值进行优化,利用Matlab软件进行编程,建立了BP神经网络和GA-BP神经网络瓦斯含量预测模型。选取淮南某矿瓦斯含量及其影响因素作为实验数据对该模型进行了实例分析,将主成份回归和BP网络算法预测结果与该模型进行了对比分析。结果表明:PCA-GA-BP网络预测模型平均相对误差为2.759%,预测效果明显优于主成份回归和BP网络预测模型,可以准确的预测煤层瓦斯含量。

关 键 词:主成份分析  SPSS  优化  GA-BP神经网络  瓦斯含量  仿真预测

Prediction of gas content based on PCA-GA-BP neural network
CAO Bo1,BAI Gang2,' target="_blank" rel="external">3,LI Hui4. Prediction of gas content based on PCA-GA-BP neural network[J]. Journal of Safety Science and Technology, 2015, 11(5): 84-90. DOI: 10.11731/j.issn.1673-193x.2015.05.013
Authors:CAO Bo1,BAI Gang2,' target="  _blank"   rel="  external"  >3,LI Hui4
Affiliation:(1. College of mining engineering, Liaoning Technical University, Fuxin Liaoning 123000, China; 2.College of Safety Science and Engineering, Liaoning Technical University, Fuxin Liaoning 123000, China; 3.Key Laboratory of Mine Thermodynamic Disasters an
Abstract:In order to improve the efficiency and accuracy of prediction on gas content in coal seam, in this paper, a new method was raised to predict the gas content, which adopted principal component analysis (PCA) to reduce the correlation between variables first, then combined BP neural network with genetic algorithm (GA). Considering the problem of slow convergence and easily trapping into the partial minimum, the algorithm adopted GA to improve the weights and thresholds of BP neural network. Taking Matlab for writing programs, the prediction models of gas content based on BP neural network and GA-BP network were established. The gas content and influence factors in a coal mine of Huainan were taken as experimental data to conduct practical analysis on this model, and the prediction results of principal component regression and BP network algorithm were compared with the result of the model. The results showed that the average relative error of PCA-GA-BP network prediction model was 2.759%, which was better than those of principal component regression and BP network prediction model, and it can accurately predict gas content in the coal seam.
Keywords:principal component analysis  SPSS  optimization  GA-BP neural network  gas content  simulation and prediction
本文献已被 CNKI 等数据库收录!
点击此处可从《中国安全生产科学技术》浏览原始摘要信息
点击此处可从《中国安全生产科学技术》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号