首页 | 本学科首页   官方微博 | 高级检索  
     

基于无人机高光谱和BP神经网络的城市水体污染监测
引用本文:冯翠杰, 方晨琦, 袁亘宇, 吴嘉浩, 王清华, 董春雨. 基于无人机高光谱和BP神经网络的城市水体污染监测[J]. 环境工程学报, 2023, 17(12): 3996-4006. doi: 10.12030/j.cjee.202308120
作者姓名:冯翠杰  方晨琦  袁亘宇  吴嘉浩  王清华  董春雨
作者单位:1.中山大学土木工程学院,珠海 519082; 2.南方海洋科学与工程广东省实验室 (珠海) ,珠海 519082
基金项目:广东省自然科学基金资助项目 (2022A1515110834,2023A1515010958);中山大学大学生创新训练计划项目 (202211415);中山大学教学质量与教学改革工程项目 (2022-91-820,2021-93-804)
摘    要:我国大多数流域存在不同程度的水体污染,城市水体污染防治与监测是一项艰巨而漫长的任务,而传统水质监测和卫星遥感方法在水体面积较大、水流运动不稳定、周边地形复杂的河流或城市湖泊的水质监测表现为适用性差、准确度低。基于无人机的高光谱遥感技术具有覆盖范围广、数据获取快速等特点,对城市水体污染监测具有一定的应用价值。以珠海市城市水域为研究对象、无人机高光谱数据为数据源,利用线性回归模型和BP (Back Propagation) 神经网络模型方法,分别建立了波段组合反射率与水体叶绿素a、氨氮和磷酸盐3种水质指标之间的最优反演模型,并通过实际样品验证了该模型在城市水体中的适用性。该研究结果不仅为大数据驱动的水质分析提供了重要的技术支持,也为无人机技术应用于城市水体污染程度评价和动态监测提供新方法。

关 键 词:无人机   高光谱   水质监测   BP神经网络   城市水体
收稿时间:2023-08-31

Water pollution monitoring based on unmanned aerial vehicle (UAV) hyperspectral and BP neural network
FENG Cuijie, FANG Chenqi, YUAN Genyu, WU Jiahao, WANG Qinghua, DONG Chunyu. Water pollution monitoring based on unmanned aerial vehicle (UAV) hyperspectral and BP neural network[J]. Chinese Journal of Environmental Engineering, 2023, 17(12): 3996-4006. doi: 10.12030/j.cjee.202308120
Authors:FENG Cuijie  FANG Chenqi  YUAN Genyu  WU Jiahao  WANG Qinghua  DONG Chunyu
Affiliation:1.School of Civil Engineering, Sun Yat-sen University, Zhuhai, 519082, China; 2.Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, 519082, China
Abstract:Water pollution is a common issue to most basins in China. Pollution prevention and monitoring of urban water are an arduous and lengthy task. It is a great challenge to conduct water quality monitoring in rivers or urban lakes with large surface areas, unstable water flow, complex surrounding terrain by traditional water quality monitoring and satellite remote sensing for their poor applicability and low accuracy. Unmanned Aerial Vehicle (UAV)-based hyperspectral remote sensing technology has wide coverage and fast data acquisition, and is applicable to urban water pollution monitoring. The present study takes urban waters of Zhuhai City as the research object, and uses UAV hyperspectral data as the data source. By processing the hyperspectral images, a linear model and a Back Propagation (BP) neural network model were established to simulate the optimal mathematical mapping between the combined reflectance of the waveband and the key water quality parameters (chlorophyll a, ammonium, phosphate). The applicability of the models in urban water bodies was demonstrated by actual samples, providing a new method for urban water pollution evaluation and dynamic monitoring. The findings not only provide important technical support for big-data-driven water quality analysis, but also for urban water pollution monitoring using UAV remote sensing technology.
Keywords:unmanned aerial vehicle (UAV)  hyperspectral  water quality monitoring  BP neural network  urban water
点击此处可从《环境工程学报》浏览原始摘要信息
点击此处可从《环境工程学报》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号